
A Lightweight Approach to Compiling and Scheduling
Highly Dynamic Parallel Programs

Ettore Speziale∗ and Michele Tartara
Dipartimento di Elettronica e Informazione (DEI)

Politecnico di Milano

via G. Ponzio 34/5, 20133 Milano, Italy

Email: {speziale,mtartara}@elet.polimi.it

Abstract
This paper describes a dynamic and lightweight compiler
able to guide the execution of highly dynamic parallel
programs at runtime without the need for a full-fledged
Just-In-Time compiler. The proposed approach allows
us to apply profitable optimizations that could not be
used at compile-time due to lack of sufficient informa-
tion. It also enables us to optimize code fragments mul-
tiple times, depending on the specific conditions of the
execution environment at runtime, while limiting the per-
formance overhead to a negligible amount.

1 Introduction

Trends in computer science show an ongoing shift of
paradigm, from sequential to parallel, because of the in-
ability to further increase clock rates due to technological
and thermal issues [6], and for exploiting the increased
transistor density guaranteed by Moore’s law [28].

With multi-/many-core processors, the offered paral-
lelism evolved from an implicit form (e.g.: Out-of-Order
execution [36]) to an explicit form, where processing el-
ements are directly controlled by programmers.

From an architectural perspective, this allows simpli-
fied processor design (by removing power- and area-
hungry components, like branch predictors [39]) and
freeing up resources to increase the number of processing
elements. This approach has been exploited in GPGPU
designs [30], where there is a large number of process-
ing elements very similar to an ALU. This leads to an
increased importance of the compiler: simpler proces-
sors are less able to reschedule instructions, therefore the
compiler has to be smart at defining their execution order.

The push toward explicit parallelism influences pro-
gramming models, compilers and runtimes. Research
works has shown that no known technique can deal with

∗This author was supported in part by a grant from ST Microelec-
tronics.

all the available parallel architectures and challenges [2].
All the explicit parallel programming models push pro-
grammers to define elementary units of work, called
either tasks [12], or parallel iterations [31] or work
items [18], and let the compiler and/or the runtime sched-
ule them according to their mutual dependencies.

In this context, compilers have been used in a classical
way: they perform translation to machine code, that is
later executed. Leveraging on the structure of the input
language, some compilers perform aggressive optimiza-
tions, such as work-items pre-scheduling [17, 35]. The
generated code is always oblivious to the existence of a
compiler, and the compiler, even when it is a JIT, does
not provide any kind of “service” to the program.

This work presents a more dynamic approach to com-
pilation. We generate code meant to interact with the
compiler during execution, to exploit dynamically avail-
able information to optimize the code on-the-fly, without
the burden of a full-fledged JIT system. In our approach
the compiler works together with a micro-thread sched-
uler. Pipeline stalls in micro-threads containing the pro-
gram code can be used to execute the compiler optimiz-
ers, thus minimizing compiler overhead at runtime.

The main motivation for pursuing this approach is
code optimization: by running the compiler during code
execution, more information is available, enabling more
precise optimizations.

As a side effect, our approach would benefit software
deployed in binary-only form, meant to run on many
different hardware configurations (e.g.: binary packages
used by Linux distributions). Allowing the program to
customize itself without being compiled from a bytecode
form at deploy-time and without the need for a Just-In-
Time compiler (that is time- and resource-consuming at
runtime) could be useful in a variety of scenarios.

Section 2 of this paper deals with existing approaches
to runtime compilation and code modification. Section 3
introduces our approach to perform runtime compilation
using lightweight compilation micro-threads and runtime



scheduling. Section 4 discusses scenarios where our
technique can be useful and Section 5 concludes.

2 Related Work

The problem of adapting programs to the runtime envi-
ronment and to the specific set of data they are working
on has been tackled in many ways, mostly related to the
concept of dynamic compilation, also known as Just-In-
Time (JIT) [3]. According to this approach, parts of a
program are compiled while the program itself is being
run, when more information is available than at compile
time and can be used to perform further optimizations.

One of the first works on JIT systems [15] deals with
the fundamental questions of JIT: determining what code
should be optimized, when, and which optimizations
should be used. We deal with similar questions, but we
decide at compile time what code to optimize and which
optimizations to apply, and postpone to runtime the task
of answering “when” and “how” to optimize the code.

JIT compilation introduces an overhead in execution
time because it causes the program to be idle while wait-
ing for the new machine code. Considering that most
programs spend the majority of time executing a minor-
ity of code [20], two papers [8, 10] independently pro-
posed the approach called mixed code, where most of the
code is interpreted and only the frequently executed part
is identified, compiled and optimized at runtime.

Some works [16, 22] exploit multi-core processors to
hide compilation latency: the compiler is run in a differ-
ent thread and uses heuristics to predict the next method
to compile before it is actually needed by the program.
State of the art implementation can be found in [21].

All JIT-related works assume a compiler is running
alongside the program. This causes a big overhead be-
cause of the memory and the time it takes to compile a
new, optimized version of the code. On the other hand,
the approach we propose does not need a full-fledged
compiler running alongside the program. It only applies
lightweight transformations to code specifically gener-
ated at compile-time to allow it, thus requiring much less
resources, while being only slightly less flexible than a
full-fledged JIT compiler.

Staged compilation is another low-overhead approach.
It splits the compilation in a static and a dynamic stage.
The static one compiles “templates”, building blocks for
the dynamic stage that connects them and fills the holes
left by the static stage with run-time values [27].

An example of a state of the art JIT compiler is the
HotSpot Java Virtual Machine [21, 32], that uses adap-
tive optimization on top of a mixed code approach, with
continuous monitoring and profiling of the program dur-
ing its execution. It performs non-conservative optimiza-
tions, such as inlining frequently called virtual methods.

Micro-threaded Code

Micro-analyzers

Pre-scheduler Micro-optimizers

Compiler

Object Code

Compiler Micro-thread Generation

Run-time Optimization

Micro-scheduler

� 4

� N

♦ ♣

Logical View

�+� ♦

♣ 4+N

Actual View

O Computational Micro-thread

H Compiler Micro-thread

O+H Mixed Micro-thread

Figure 1: proposed compilation/execution pipeline.
Micro-threaded code is analyzed to detect profitable run-
time optimizations. Compiler micro-threads (filled-in
symbols) are built and possibly merged with computa-
tional micro-threads (empty symbols), generating mixed
micro-threads (both symbols)

To deal with Java’s dynamic class loading it uses dy-
namic de-optimization. When the assumptions that led to
a non-conservative optimization become false, the code
is de-optimized back to a safe version, and then new op-
timizations are applied.

HotSpot supports two different compilers, namely the
“Client” one and the “Server” one. The HotSpot Client
Compiler [21] is focused on optimizing client applica-
tions, where the responsivity of the application is more
important than deep optimization. The HotSpot Server
Compiler [32] aims at optimizing the server applications,
where it is worth spending more time compiling parts of
the application. Therefore, the compiler features all the
classic optimizations, as well as some Java specific ones.

A different approach to adapting programs to the run-
time environment is self-modifying code. Von Neumann
architectures [38] represent code in the same way as
data. Therefore, a program is able to modify its own
code while running, changing its own behavior. The
main drawback of self-modifying code is the difficulty
for many programmers to understand, write and main-
tain such code. Self-modifying code is used in [26] to
write an operating system kernel and in Knuth’s MIX ar-



chitecture [19] for the subroutine calling convention.

3 Proposed Approach

In this paper we present a new kind of compiler optimiza-
tions, able to adapt to highly dynamic execution environ-
ments without adding excessive overhead at runtime.

Optimizations built according to our approach are di-
vided in two phases, one to be executed at compile time
and one at runtime. The runtime phase is extremely
lightweight and is assigned the task of modifying the pro-
gram to actually apply the optimization according to the
current state of the execution environment, whereas the
compile-time phase has to generate the machine code of
the program in such a way to allow this to happen

The need for offloading most of the optimization-
related computation on the static compiler has already
been assessed by other works, such as [29]. Another ex-
ample of cooperation between compiler and runtime can
be found in [14] for GPUs.

With respect to the traditional static/dynamic compi-
lation flow, where compilation and execution phases are
clearly separated, we have to face two specific issues.

Expected profitability: not all optimizations have to
be delayed at runtime. We aim at applying an optimiza-
tion at runtime only if there are no sufficient information
to apply it at compile-time and a considerable improve-
ment is expected. At the same time, since code is gen-
erated at compile-time, we free the runtime environment
from the burden of applying trivial but needed optimiza-
tions, such as copy propagation, that a traditional JIT ap-
proach has to perform during program execution.

Moreover, delaying at runtime all applicable optimiza-
tions is not feasible, because we aim at keeping a lower
overhead with respect to traditional JITs. This naturally
leads to a careful selection of which optimizations to de-
lay, based on their expected profitability.

Compiler interference: runtime application of opti-
mizations leads to possible conflicts between optimizers
and the running optimized code. This happens because
there is no strong separation between the compiling and
running phases of the program. To guarantee consis-
tency, it is necessary to coordinate optimization and exe-
cution of the code.

To handle these issues, we define a model that al-
lows us to detect, handle and apply profitable optimiza-
tions. We represent the program using a set of micro-
threads (similar to those described in [11, 12, 18]). Part
of these micro-threads are defined by the programmer or
by the compiler and contain the code of the program be-
ing written. We call them computational micro-threads.
The remaining micro-threads are called compiler micro-
threads. They are generated by the compiler and contain
the code that is able to apply optimizations at runtime.

Each compiler micro-thread is associated to a compu-
tational one, and manipulates one of its optimizable re-
gions, that are the sections of the code of a computational
micro-thread that can be modified by a runtime optimiza-
tion. The dual of an optimizable region is an optimizing
region. It is defined as all the code of a computational
thread that is not part of the corresponding optimizable
region. The optimizing region is the region where the
optimizer micro-thread can safely run concurrently with
the computational micro-thread to apply its optimization.

3.1 Compilation/Execution Pipeline

With reference to Figure 1, our compilation approach
is split into two parts: generation of compiler micro-
threads and runtime optimization.

The first step is intended to be part of a static compi-
lation pipeline, and its goal is preparing the code to be
optimized at runtime. We want to consider only opti-
mizations that cannot be applied at compile-time, so this
step should be run after standard compiler optimizations.
First of all, it has to look at the input code to find candi-
date applicable runtime optimizations. It is not possible
to apply all optimizations, because interferences between
them are possible. Therefore, they must be scored with
respect to the expected profitability. Then, the model
based on optimizable/optimizing regions allows us to
represent such interferences on the computational micro-
thread control flow graph. A pre-scheduler analyzes the
interferences and selects the best optimizations. Finally,
the corresponding compiler micro-threads are generated
from a library of micro-optimizers. For each computa-
tional micro-thread, multiple compiler micro-threads can
be generated, one for each optimization.

It is worth noting that the micro-threaded model is a
purely logical one: we aim at minimizing runtime over-
head, therefore if the system is implemented on a com-
puting architecture with high costs of inter-thread com-
munication the micro-threads can be multiplexed into a
single mixed micro-thread. To do this, the pre-scheduler
analyzes the computational micro-thread and compiler
micro-threads, and schedules in a single mixed micro-
thread the instructions from both, according to con-
straints imposed by optimizable and optimizing regions.
Merging different micro-threads together was proven to
be effective for scheduling Single Instructions Multiple
Threads programs [23, 24, 35]. In our approach, micro-
threads are not homogeneous, but we think that similar
techniques have to be used to limit as much as possible
the overhead of runtime optimizations.

The output of the pre-scheduler is a set of threads con-
taining micro-threaded code intended to be run by a run-
time micro-scheduler. From the logical point of view,
the runtime scheduler has to manage both computational



and compiler micro-threads, but, due to pre-scheduling,
it actually has to manage mixed micro-threads too: there-
fore, some of the micro-threads need synchronization,
whereas some other micro-threads have already been
merged by the pre-scheduler, thus eliminating the need
for explicit synchronization.

3.2 Run-time Optimization

The compiler micro-threads have to change the code of
their associated computational micro-thread to optimize
it. This can be done explicitly, using self-modifying code,
or implicitly, using branch tables.

The compiler micro-thread is generated together with
the optimizable region code it is associated to. Indeed,
knowing the layout of the optimizable region, it is possi-
ble to generate instructions performing binary rewriting
at runtime, without influencing other regions of code of
the computational micro-thread.

The strength of self-modifying code is the ability to
generate the most suitable instructions for a given op-
timizable region. However, the cost of code morphing
is considerable. An entire region of code must be rewrit-
ten. This requires editing the memory locations that store
the optimizable region. Moreover, if the code is shared
by multiple micro-threads, code cannot always be modi-
fied: the conditions triggering runtime optimization for a
given micro-thread could be not valid for the others. De-
spite these limitations, self-modifying code can be an ef-
fective optimization strategy, if exploited for highly prof-
itable optimizations, like inner loop vectorization.

A branch table, on the other hand, is a collection of un-
conditional jumps to different locations. At runtime, an
index is used to select where to jump to. It can be imple-
mented using different techniques, and is used to trans-
late switch statements or to implement virtual tables. In
our context, branch tables enable compiler micro-threads
to change the execution flow of the associated compu-
tational micro-thread without changing its code. When
our logical model is implemented, an optimizable re-
gion should be represented as a collection of sub-regions
linked using branch table-based jumps. Compiler micro-
threads just have to modify the indices used to select
the active jump in branch tables, thus implicitly modi-
fying the control flow graph of the computational micro-
thread.

With respect to self-modifying code, branch tables im-
pose less runtime overhead, since applying an optimiza-
tion simply amounts to setting a set of indices. On the
other hand, all the possible fragments of code used to op-
timize the region need to be generated at compile-time.
The low runtime overhead makes this strategy suitable
for highly dynamic scenarios, where the compiler micro-
thread has to modify the execution flow more often.

To trigger an optimization, compiler micro-threads
must observe the state of the associated computational
micro-thread. If an optimization was postponed at run-
time because the value of a variable was unknown at
compile-time, the observed state will surely include that
variable as one of the elements to be considered to decide
when and how to apply the optimization at runtime.

It is worth noting that our approach enables a wide
range of runtime optimizations. We use branch tables
to restructure the execution flow and, where this is not
sufficient, we also allow code morphing to apply deeper
modifications. The use of branch tables should not be
perceived as just a static branch prediction [5], since it
is not performed statically, but is dynamically changed
every time it is needed, as a result of modifications in the
execution environment.

The strong relationship between computational and
compiler micro-threads motivate us to emphasize the
importance of having an effective and efficient pre-
scheduler. Data related to a computational micro-
thread must be collected and analyzed by the corre-
sponding compiler micro-threads. Moreover, compiler
micro-threads change the behaviour of the computational
micro-thread. By scheduling the different micro-threads
together we aim at avoiding communication delays be-
tween them. This guarantees deterministic interactions
between micro-threads, as well as high performance.
Even if it is strongly discouraged, our proposal does
not prevent scheduling compiler micro-threads indepen-
dently. However, in this case it is required to consider
explicit synchronization between micro-threads, possi-
bly exploiting weak memory consistency models [1] to
limit communication overhead.

The authors of [25] observe that current production-
quality compilers have issues with vectorization because
the required analyses, such as interprocedural alias anal-
ysis, are not available. Such an analysis is really hard
to implement at compile time, but pointers can be dis-
ambiguated at runtime. This further supports the need
for splitting the compilation effort between compile-time
and runtime, as allowed by our approach.

4 Foreseen Applications

In this section we present two examples of optimization
that would benefit from our approach. Figure 2 gives a
brief overview.

4.1 Adaptive Loop Unrolling
The classic loop unrolling optimizations [4] can lead
to improved, unaffected or worsened execution times
depending on whether the right unroll factor is cho-
sen [7, 9]. This is a challenging task, requiring good



Computational
Micro-thread

Compiler
Micro-thread

(a) adaptive loop unrolling

Task No. 1 Task No. 2

T1

T2

Task Graph

Compiler Micro-thread

(b) dynamic task fusion

Basic Block

Unrolled Body

Branch-table Read

Branch-table Write

Task

(c) legend

Figure 2: graphical representation of two foreseen applications of our proposed approach

knowledge of the target architecture [33]. In most cases,
this is only available at runtime, and is exploited using a
JIT compiler. Unfortunately, JITs are really heavyweight
and time consuming.

With our approach, we estimate a maximum sensible
unrolling factor k at compile-time. We unroll the code
of the loop k times and insert a branch table read be-
tween each pair of unrolled loop bodies, as in Figure 2(a).
This is the optimizable region. At runtime, the compiler
micro-thread determines the best unrolling factor n ≤ k
(according to the size of caches, the number of required
iterations, etc.) and modifies the n-th branch table read
so that it jumps back to the loop header, and all the other
ones so that they either jump to the next instruction, or
are substituted by nop instructions.

This approach is much lighter that a full-fledged JIT,
but it does not enable the application of further optimiza-
tions on the unrolled code. However, if the underlying ar-
chitecture is micro-programmed, the machine code will
be rewritten and optimized by the hardware, making our
code comparable to that unrolled by a JIT.

4.2 Dynamic Task Fusion
Task based data-flow programming models have been
proven to be an attractive way to tackle some parallel ap-
plications [34]: tasks are generated on the fly, thus they
require the use of a runtime scheduler to select and start
them according to data and control dependencies. There-
fore, after each task finishes executing, control has to re-
turn to the scheduler so that it can start the next task.

Using our approach, we can define an optimizable re-
gion just before the end of the machine code of each

task, made of just a branch table read. As shown in
Figure 2(b), at runtime, a compiler micro-thread sup-
ports the scheduler: it observes the state of the system
and modifies the corresponding branch table to have it
point to the beginning of the code of the next ready task.
Therefore, tasks can be executed continuously, without
the overhead of reaching back to the scheduler at the end
of each of them. The modification of the branch table
takes place as soon as the compiler micro-thread is aware
of the next ready task, therefore the current and the next
task will be executed one immediately after the other, as
if fused together. Some call to the scheduler will still be
needed, for example in order to mark a task as finished,
unlocking the depending ones.

When the task graph is known at compile time, more
aggressive optimizations can be performed [13]. Our ap-
proach does not allow this, but it limits the scheduling
overhead that arises when inter-dependent tasks have to
be executed (as tackled in [37]) and handles highly dy-
namic applications where the task graph is known only at
runtime, even if the code is generated at compile-time.

5 Concluding Remarks and Future Work

In this paper we presented a novel lightweight approach
to optimize highly dynamic parallel programs, based on
the use of compiler micro-threads that modify the run-
ning program at runtime, adapting it to the current en-
vironment. We described some optimizations that could
implemented using our methodology, to show that is gen-
eral enough to be applied to a wide variety of algorithms.
At the same time, though, it does not need to be com-



pletely general-purpose, since it is not meant to com-
pletely replace other techniques, such as static optimiza-
tion or JIT compilation.

We are currently planning the implementation of our
compilation toolchain in order to conduct an extensive
and accurate experimental campaign.

References
[1] S. V. Adve and K. Gharachorloo. Shared Memory Consistency

Models: A Tutorial. IEEE Computer, 29(12):66–76, 1996.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. P. Lester, J. Shalf, S. W.
Williams, and K. A. Yelick. The Landscape of Parallel Comput-
ing Research: A View from Berkeley. Technical report, EECS
Department, University of California, Berkeley, 2006.

[3] J. Aycock. A Brief History of Just-In-Time. ACM Comput. Surv.,
35(2):97–113, 2003.

[4] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler Transfor-
mations for High-Performance Computing. ACM Comput. Surv.,
26(4):345–420, 1994.

[5] T. Ball and J. R. Larus. Branch Prediction For Free. In PLDI,
pages 300–313, 1993.

[6] S. Borkar. Thousand Core Chips – A Technology Perspective. In
DAC, pages 746–749, 2007.

[7] S. Carr and K. Kennedy. Improving the Ratio of Memory Oper-
ations to Floating-Point Operations in Loops. ACM Trans. Pro-
gram. Lang. Syst., 16(6):1768–1810, 1994.

[8] R. J. Dakin and P. C. Poole. A Mixed Code Approach. Comput.
J., 16(3):219–222, 1973.

[9] J. W. Davidson and S. Jinturkar. Aggressive Loop Unrolling in a
Retargetable Optimizing Compiler. In CC, pages 59–73, 1996.

[10] J. L. Dawson. Combining Interpretive Code with Machine Code.
Comput. J., 16(3):216–219, 1973.

[11] A. Duran, R. Ferrer, E. Ayguadé, R. M. Badia, and J. Labarta.
A Proposal to Extend the OpenMP Tasking Model with De-
pendent Tasks. International Journal of Parallel Programming,
37(3):292–305, 2009.

[12] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implemen-
tation of the Cilk-5 Multithreaded Language. In PLDI, pages
212–223, 1998.

[13] M. I. Gordon, W. Thies, and S. P. Amarasinghe. Exploiting
Coarse-grained Task, Data, and Pipeline Parallelism in Stream
Programs. In ASPLOS, pages 151–162, 2006.

[14] A. Hagiescu, H. P. Huynh, W.-F. Wong, and R. S. M. Goh. Au-
tomated Architecture-Aware Mapping of Streaming Applications
Onto GPUs. In IPDPS, pages 467–478, 2011.

[15] G. J. Hansen. Adaptive Systems for the Dynamic Run-time Opti-
mization of Programs. PhD thesis, 1974.

[16] U. Hölzle and D. Ungar. A Third-Generation SELF Implemen-
tation: Reconsiling Responsiveness with Performance. In OOP-
SLA, pages 229–243, 1994.

[17] R. Karrenberg and S. Hack. Whole-function Vectorization. In
CGO, pages 141–150, 2011.

[18] Khronos OpenCL Working Group. The OpenCL Specification,
version 1.1, 2010.

[19] D. E. Knuth. The Art of Computer Programming, Volume I: Fun-
damental Algorithms. Addison-Wesley, 1968.

[20] D. E. Knuth. An Empirical Study of FORTRAN Programs.
Softw., Pract. Exper., 1(2):105–133, 1971.

[21] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Rus-
sell, and D. Cox. Design of the Java HotSpotTMClient Compiler
for Java 6. TACO, 5(1), 2008.

[22] C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the Over-
head of Dynamic Compilation. Softw., Pract. Exper., 31(8):717–
738, 2001.

[23] J. Lee, J. Kim, J. Kim, S. Seo, and J. Lee. An OpenCL Frame-
work for Homogeneous Manycores with No Hardware Cache Co-
herence. In PACT, pages 56–67, 2011.

[24] J. Lee, J. Kim, S. Seo, S. Kim, J.-H. Park, H. Kim, T. T. Dao,
Y. Cho, S. J. Seo, S. H. Lee, S. M. Cho, H. J. Song, S.-B. Suh,
and J.-D. Choi. An OpenCL Framework for Heterogeneous Mul-
ticores with Local Memory. In PACT, pages 193–204, 2010.

[25] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A. Padua. An
Evaluation of Vectorizing Compilers. In PACT, pages 372–382,
2011.

[26] H. Massalin. Synthesis: An Efficient Implementation of Funda-
mental Operating System Services. PhD thesis, 1992.

[27] M. Mock, C. Chambers, and S. J. Eggers. Calpa: a Tool for
Automating Selective Dynamic Compilation. In MICRO, pages
291–302, 2000.

[28] G. E. Moore. Cramming More Components onto Integrated Cir-
cuits. Electronics, 38(8), 1965.

[29] D. Nuzman, S. Dyshel, E. Rohou, I. Rosen, K. Williams,
D. Yuste, A. Cohen, and A. Zaks. Vapor SIMD: Auto-vectorize
Once, Run Everywhere. In CGO, pages 151–160, 2011.

[30] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Com-
pute Architecture: Fermi. Technical report, 2009.

[31] OpenMP Architecture Review Board. OpenMP Application Pro-
gram Interface, version 3.0, 2008.

[32] M. Paleczny, C. A. Vick, and C. Click. The Java
HotSpotTMServer Compiler. In Java Virtual Machine Research
and Technology Symposium, 2001.

[33] V. Sarkar. Optimized Unrolling of Nested Loops. In ICS, pages
153–166, 2000.

[34] F. Song, A. YarKhan, and J. Dongarra. Dynamic Task Scheduling
for Linear Algebra Algorithms on Distributed-memory Multicore
Systems. In SC, 2009.

[35] J. A. Stratton, V. Grover, J. Marathe, B. Aarts, M. Murphy, Z. Hu,
and W. mei W. Hwu. Efficient Compilation of Fine-grained
SPMD-threaded Programs for Multicore CPUs. In CGO, pages
111–119, 2010.

[36] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple
Arithmetic Units. IBM Journal of Research and Development,
11(1), 1967.

[37] H. Vandierendonck, G. Tzenakis, and D. S. Nikolopoulos. A Uni-
fied Scheduler for Recursive and Task Dataflow Parallelism. In
PACT, pages 1–11, 2011.

[38] J. von Neumann. First Draft of a Report on the EDVAC. Annals
of the History of Computing, IEEE, 15(4), 1993.

[39] T.-Y. Yeh and Y. N. Patt. Two-Level Adaptive Training Branch
Prediction. In MICRO, pages 51–61, 1991.


	Introduction
	Related Work
	Proposed Approach
	Compilation/Execution Pipeline
	Run-time Optimization

	Foreseen Applications
	Adaptive Loop Unrolling
	Dynamic Task Fusion

	Concluding Remarks and Future Work
	References

