
A Lightweight Approach to Compiling and Scheduling
Highly Dynamic Parallel Programs

Ettore Speziale, Michele Tartara

Dipartimento di Elettronica ed Informazione (DEI), Politecnico di Milano, Milano, Italy

Problem Statement

I Optimizing highly dynamic parallel programs requires runtime info
. program behavior depends on input data
. wide spectrum of hardware configurations
. the performance of statically compiled programs is not predictable

I Runtime libraries are useful – sometimes required – to manage parallel
programs and to improve their performance
. some information needed at compile-time are available at run-time
. exploited by runtime libraries to make up for compiler deficiencies
. increased use of computational resources at run-time

I A compiler-based approach is more appealing

Current Solutions

I Code Specialization
. multiple version of code are statically generated at compile-time
. the fittest one is selected at run-time
. pros: run-time cost only given by choice between alternatives
. cons: increasing alternatives improves effectiveness, but also code-size

I JIT Compilation
. ad-hoc machine code compiled at run-time
. pros: potentially optimal code is generated
. cons: a full compiler is required; the actual code quality is limited by

run-time constraints
I Self-modifying Code

. modifies code on the fly, while it is being executed

. pros: improves the performance of code without requiring a compiler

. cons: makes code harder to write and to maintain

Proposed Approach

Micro-threaded Code

Micro-analyzers

Pre-scheduler Micro-optimizers

Compiler

Object Code

Compiler Micro-thread Generation

Run-time Optimization

Micro-scheduler

Logical View
Actual View

Computational Micro-thread

Compiler Micro-thread

Mixed Micro-thread

I At compile-time
. determine which optimizations will be applicable only at run-time
. select those with the highest expected profitability
. inject the code that will apply the optimization at run-time
. pre-scheduler prevents optimizing/optimizable code conflicts

I At run-time
. optimizable code mixed with optimizing code
. micro-scheduler triggers the execution of optimizing code
. optimizing code shares the same execution-flow as optimizable code

Challenges

I Computing expected profitability of optimizations
I Choosing optimization mechanism

. branch tables

. compiler-generated self-modifying code

Example: Legend

Basic Block Unrolled Body Branch-table Read Branch-table Write Task

Example: Loop Unrolling

Computational
Micro-thread

Compiler
Micro-thread

I Loop body unrolled multiple times
. loop bodies separated by branch-table reads
. actual unrolling factor controlled by optimizers through branch tables
. micro-programmed architectures can benefit from the reduced number

of branches by pursuing more aggressive micro-code schedules

Example: Task Fusion

Task No. 1 Task No. 2

T1

T2

Task Graph

Compiler Micro-thread

I Dynamic task graphs require scheduler invocation after each task
I A branch-table read at the end of each task

. allows jumping to the next ready task without invoking the scheduler
I Optimizers set the branch-table according to the actual task-graph

. scheduler code shares the same execution-flow as task code

Conclusion and Future Work

I Dynamic techniques are essential to manage highly dynamic parallelism
. static approaches lacks fundamental information
. JIT compilation requires too much resources

I Our proposed approach
. bridges the gap between static and dynamic techniques
. splits optimization effort between compile-time and run-time
. prepares optimizer-aware code at compile-time, lowering run-time cost
. finalizes the optimization at run-time, exploiting then-available info

http://www.dei.polimi.it <name>.<surname>@mail.polimi.it


