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Abstract—Reduction operations play a key role in modern
massively data parallel computation. However, current implemen-
tations in shared memory programming APIs such as OpenMP
are often computation bottlenecks due to the high number of
atomic operations involved. We propose a reduction design that
exploits the coupling with a barrier synchronization to optimize
the execution of the reduction. Experimental results show how the
number of atomic operations involved is dramatically reduced,
which can lead to significant improvement in scaling properties
on large numbers of processing elements. We report a speedup
of 1.53x on the 312.swim m SPEC OMP2001 benchmark and
a speedup of 4.02x on the streamcluster benchmark from the
PARSEC suite over the baseline.

I. INTRODUCTION

The rise of multi-core architectures in recent years has led
to the widespread need for parallel software. Given the limited
improvements in clock rates, exploiting parallel execution is
needed to guarantee performance improvements.

Parallelism can be exploited at several levels of granular-
ity, from instruction level parallelism to data parallelism to
task parallelism. When considering data parallelism, reduction
operations are a key component of many algorithms. Typical
implementations of the reduction construct fall into three cate-
gories: either the reduction is performed in a critical section by
a single thread; or atomic read-modify-write instructions are
used to concurrently aggregate data; or the availability of fast
barrier synchronization is exploited to divide the reduction into
two smaller operations, each executed by a different thread.
The last case is commonly used, e.g., in GPGPU code [1]. On
the other hand, standard benchmark kernels such as stream-
cluster from the PARSEC [2] suite employ the first method.
Other benchmark suites employ the reduction support provided
by the OpenMP [3] Application Programming Interface (API).

OpenMP aims at providing an easy-to-use way to program
parallel applications at multiple levels of granularity, imple-
mented on top of the C and Fortran languages. Specifically,
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it targets data and task parallelism by providing directives to
identify parallel regions of code and parallel loop constructs.

The OpenMP reduction clause is associated with the
parallel loop directive and defines a reduction operation using
a combination operator specified in the clause:

#pragma omp for reduction(+:acc)
for(unsigned i=0; i<LOOPS; ++i)

acc += foo();

OpenMP support for reduce-like constructs is limited to
associative and commutative binary operators and, in the case
of Fortran, intrinsic procedures, which are also associative
and commutative functions. Therefore the reduction loops can
be parallelized by associating each thread with a subset of
the elements to be combined. The partial reduction value
computed by each thread can then be combined in pairs
recursively until a single reduction value is produced. This
process takes a logarithmic number of steps with respect to
the initial number of threads.

The parallel loop implements a fork-join model, which
requires a single implicit synchronization. In the general case,
a single barrier synchronization is needed to ensure that all
iterations of a parallel loop are completed at the join point
before moving to other parts of the program. This implicit
synchronization can be removed with a nowait clause, while
explicit synchronizations can also be used to handle data
dependencies.

On the other hand, the reduction step, which always takes
place at the end of a parallel loop, requires more synchroniza-
tion. This synchronization overhead leads the reduction step to
cause loss of scalability, to the point where reduction overhead
can become a critical issue, as shown by Fürlinger et al. [4]
for the 312.swim m SPEC OMP2001 benchmark.

The goal of this paper is to introduce an optimized barrier
synchronization and reduction step, by allowing the interme-
diate values of the reduction to be carried along by the inter-
thread communication required for the barrier synchronization.



The proposed solution is demonstrated by means of both
OpenMP and pthread-based implementations. The pthread
implementation is stand-alone and introduces a combined
barrier-reduction function.

In the case of OpenMP, we replace libgomp1 barrier syn-
chronizations involved in a reduction with a tournament bar-
rier [6], which is both more efficient and scalable, and mirrors
the tree structure of the parallel reduction. We then use the
atomically-accessible flags of the tournament barrier to store
partial reduction values, thus removing the need for locks in
communicating the partial values.

An experimental campaign conducted on the reduction
benchmarks from most representative suites shows speedups
up to 4.02x.

The rest of this paper is organized as follows. Section II
gives a brief overview of barrier synchronization and reduction
implementations state of the art. Section III provides a detailed
description of our solution, while Section IV shows its worth
through an experimental campaign on both benchmark appli-
cations and synthetic micro-benchmarks. Finally, Section V
provides comparison with the state of the art in reduction
optimization and Section VI draws some conclusions and
highlights future research directions.

II. BACKGROUND

In this Section, we review the background in barrier syn-
chronization algorithms and parallel reduction implementation,
with an eye to the implementation of both features in OpenMP.

A. Barrier Synchronization

Barrier synchronization overheads account for a large frac-
tion of the communication time in parallel/concurrent appli-
cations.

Barriers can be used with both message passing and shared
memory programming models. In this paper, we will describe
barrier algorithms in terms of the shared memory program-
ming model, since it is the one implemented in OpenMP.

The goal of an optimized barrier algorithm is in both
cases to minimize the communication involved during each
barrier operation. In the case of message passing, this is
represented by the packets sent, while for shared memory the
communication is obtained through the execution of atomic
instructions, as their execution is guaranteed to be correctly
observed by threads other than the one performing them.

The minimization of barrier synchronization overheads has
been addressed by a large number of studies [7] proposing
new barrier algorithms. In general terms, we can identify three
class of barrier algorithms: centralized, dissemination and tree
barrier.

a) Centralized: the barrier state is represented by a
shared centralized structure, such as a counter; each thread
atomically increments the counter, then it spins over the
counter, using atomic operations in the process, until the
expected final value is reached.

1libgomp is the OpenMP runtime implementation provided by the GNU
GCC compiler [5].

b) Dissemination: the barrier state is a partitioned into
sections, each accessed by a subset of threads using the barrier;
splitting the state allows to minimize communication needed
to keep a consistent state. In general, more communication
operations are needed than in a centralized barrier, but since
most communications access different sections of the barrier
state, conflicts are reduced, producing an overall reduction in
execution time.

c) Tree: the barrier state is partitioned, spread across
threads using the barrier and laid out in a tree structure; this
results in high memory consumption to maintain a tree data
structure, but minimizes both communication and conflicts.

The centralized barrier class includes the central counter
barrier [8], used in libgomp; the butterfly barrier [9] belongs
to the dissemination class; the tournament barrier [6] is an
example of a tree barrier. A full analysis of the state of the
art is beyond the scope of this paper, but a good survey is
provided by Nanjegowda et al. [7].

Distributing the barrier state among threads is a mandatory
feature in the message passing programming models – it
allows to distribute the communication traffic. However, it is
also important in the shared memory programming model, as
it allows to reduce the number of invocations of the cache
coherency protocols.

B. Reduction Implementations

A reduction operation computes a scalar value as a combi-
nation of values in a sequence. In a OpenMP parallel region,
a reduction is almost always followed by a barrier operation.
This allows the reduction value to be correctly seen by all
threads after leaving the barrier.

The reduction itself can be executed in several different
ways. In the most trivial scheme, the reduction is computed
by the master thread between two barrier operations. The
reduction is computed sequentially. The first barrier ensures
that the master thread sees a consistent state of the memory –
all other threads must have finished the previous phase – before
starting aggregating values. The second barrier blocks other
threads until the reduction is completed. Such a simple scheme
obviously sacrifices all opportunities for parallelization, and
involves two barrier synchronizations, but the reduction itself
is computed without performing any read-modify-write atomic
instruction.

In general, however, the OpenMP compiler parallelizes the
reduction. In this scenario, the reduction value is a variable
shared among all threads. Each thread performs a partial re-
duction over private data, and then safely aggregate the partial
reduction value to the global one. In addition to parallelization,
this scheme allows the elimination of the first barrier. On the
other hand, the global aggregation can be performed inside a
critical section, or be executed through an atomic read-write-
modify instruction – both of which are expensive.

If the hardware architecture supports fast barrier synchro-
nization, it is also possible to perform reductions in a loga-
rithmic number of steps, using a divide et impera approach
with barriers to separate each step from the following. Since



GOMP_barrier();
tid=omp_get_thread_num();
if(tid==0) {

red=0;
for(i=0; i<SIZE; ++i)

red+=data[i];
}
GOMP_barrier();

(a) Serialized

private_red=0;
for(i=lw; i<up; ++i)

private_red+=data[i];
atomic_add(&red,

private_red);
GOMP_barrier();

(b) Parallelized

GOMP_barrier();
tid=omp_get_thread_num();
sred[tid]=data[tid];
for(i=1; i<SIZE; i*=2) {

if(tid%(2*i)==0)
sred[tid]+=data[tid+i];

GOMP_barrier();
}
if(tid==0)
red=sred[0];

GOMP_barrier();
(c) Hand-written

Figure 1. Comparison of reduction implementations. In the serialized version the reduction is performed by the master thread, and constrained by two barrier
operations. The parallelized version distributes the computation, eliminating the need of the first barrier, but paying the cost of an atomic read-modify-write
atomic instruction. Finally, the last fragment performs a logarithmic reduction. This requires dlog2(n)e barrier synchronizations, and is only worth doing
when the hardware provides a fast implementation of this construct.

this implementation requires log2(n) barrier synchronizations,
where n is the size of the sequence, it is only acceptable when
there is hardware support for fast barriers.

Figure 1 reports an example for each of the three imple-
mentations, using primitives from the libgomp runtime [5].
The first example, Figure 1(a), shows a simple serialized
implementation, while the second, Figure 1(b) reports the
code generated by GCC to implement a reduction associated
with a omp for directive. The loop boundaries lw and up
are set by the OpenMP runtime and ensure that accesses to
the input array are orthogonal between threads. Finally,
Figure 1(c) performs a logarithmic reduction. Note that the
code is more complex than previous examples and could be
further optimized.

C. Atomic Operations

To allow threads to coordinate their execution, modern
microprocessors support atomic memory access operations. In
some cases, the atomicity is guaranteed by hardware properties
for memory read and write operations. For example, on the
Intel x86 P6 family processors every load and store aligned to
8/16/32/64 bits fitting into a cache line is atomic [10].

However, in most cases the atomic operations are more
complex than simple reads or writes. The two most popular
classes of atomic operations are the read-modify-write and the
compare-and-swap.

Atomic read-modify-write instructions atomically read a
value from memory, perform an arithmetic or logic opera-
tion, and write the result in the same memory address from
which the operand was read. On modern microprocessors,
the atomicity is implemented on top of the cache coherency
mechanism [11].

Compare-and-swap instructions allow to atomically read a
value from the memory, and optionally replace it with the
content of an operand. Compare-and-swap operations are more
powerful than any atomic read-modify-write instruction [12],
but costs are comparable – in both cases, the time spent
achieving atomicity is the dominant cost factor.

n0

n1

n3

t0

n4

t1

n2

n5

t2

n6

t3

Figure 2. Execution of the tournament barrier algorithm. Each thread enters
into the barrier via a statically assigned leaf. The dashed path is followed by
threads entering in an active node. They climb the tree until a passive node
or the root node is reached.

III. COMBINING BARRIER AND REDUCTION

To mitigate reduction overhead, we can combine the ex-
ecution of each reduction and its associated barrier. This
allows to pay synchronization cost once, while performing two
operations – reduction and barrier.

To improve performance, we also aim at reducing the
usage of atomic read-modify-write instructions as much as
possible. Thus, we choose the tournament barrier [6] as
a starting point for our reduction design, since it achieves
synchronization without performing any atomic read-modify-
write instruction [7].

A. Tournament Barrier

The tournament barrier employs a binary tree data structure,
where each of the threads that need to be synchronized is
statically associated to an arbitrarily chosen leaf. Thus, for
synchronizing n threads, the algorithm uses a tree with 2n−1
nodes. The algorithm operates in log2n rounds.

Example 1. Consider the four threads and the associated
barrier tree shown in Figure 2. The barrier tree is a complete



binary tree, with four leaves, n3 to n6. Odd numbered nodes
are active, while even numbered ones are passive, except for
the root node n0. At the beginning each thread is assigned
to a leaf node. Threads t0 and t2 enter into active nodes and
start spinning until they are signalled by their siblings. Threads
t1 and t3 enter passive nodes, signal their siblings, and start
spinning until they are notified during the exit phase. Once
t0 and t2 have been notified by t1 and t3, they move to n1

and n2 respectively, starting a new synchronization round. In
this round t0 moves to an active node, while t2 to a passive
node. Thus t0 progresses to the root node n0, while t2 waits
spinning. Once t0 reaches the root node, it starts the barrier
exit phase. First t0 returns to n1 and signals to t2 to leave the
barrier, then it moves to n3, signals t1 that synchronization
has been performed and leaves the barrier; t2, in turn, notifies
t3. Once notified, t1 and t3 leave the barrier.

The standard tournament barrier avoids atomic read-modify-
write instructions by exploiting point-to-point synchronization
– each node contains a flag variable, which is written only by
its sibling. Thus, each flag variable is only written by a single
thread and hence no conflicts can occur.

However, such feature comes at a cost – the tournament
barrier consumes more memory than other barrier algorithms.
Moreover, the size and alignment of the flag must be carefully
chosen to avoid false-sharing – indeed, if two flag variables
share the same cache line, every update to one of the two
triggers the execution of the cache-coherency algorithm, thus
degrading performance. The flag must thus have a size equal
to the cache line, even though it only carries one bit of
information – all other bits are just padding. E.g., on a machine
with a 64-byte (512-bits) wide cache line, each flag includes
511 bits of unused padding.

B. Basic Reduction Design

The key idea of our design is to exploit the free space
available in the tournament barrier flag variable to propagate
the partial results of the reduction operation, computing them
within the nodes.

To this end, flag variables are stored into the widest type
that allows atomic read/write access without locking – we will
call this type the container type in the rest of the paper. They
are also aligned to the cache line size, to avoid false-sharing.

The container type is split into two sections, shown in
Figure 3(a): flag bit stores the state of the barrier operation (1
bit); payload stores the state of the reduction operation (n−1
bits, where n is the size of the container type).

In the case of a 64-bit machine with a 64-byte wide cache
line, the container type is a 64-bit integer, aligned to 64-bytes.

As depicted in Figure 3(a), the first bit is the flag bit, while
the remaining bits of the container type represent the payload.

All bits needed to align the container to the cache line are
wasted, since we cannot access them atomically without using
locks and thus adding an overhead that would prevent the
algorithm from achieving a speedup with respect to existing
designs.

01101 . . . 11 1

container

payload flag

(a) Base

01101 . . . 11

auxiliary

00000 . . . 00 1 1

container

payload path flag

(b) Extended

Figure 3. Layout of the container type. In the base version only one bit
is needed to encode the barrier state, all others can be used to pack partial
reduction values. The extended layout uses one more bit to find whether the
reduction partial value is packed into the container payload or stored in the
auxiliary variable.

A thread entering a passive node stores into its active sibling
both the flag bit and the payload containing its own partial
reduction result. Then, it waits to be notified by its active
sibling by spinning on its own flag variable. At each spin,
the value of the flag bit is extracted from the container and
checked.

A thread entering an active node first spins over its flag
variable, waiting for the thread associated with the passive
sibling node to reach the barrier. At each spin, the container
flag variable is read and the flag bit is extracted and checked. If
the flag bit is set, the payload is also extracted and aggregated
with the private partial result of the thread. The thread then
enters the parent node, starting a new round of the algorithm.

When a thread returns to an active node after visiting its
parent, the same operations are performed as in the exit phase
of the basic tournament barrier algorithm. The thread notifies
its passive sibling that synchronization has been achieved by
setting the flag bit into its flag variable.

In our design, reaching the root node has a double meaning:
not only all threads have reached the barrier, but the reduction
is also computed, and its value is stored in the current thread
private memory space. To make this value readable to all
threads, it is necessary to store it in a global-accessible variable
and then force a memory fence operation. At this point the
reduction is completed and the tournament barrier algorithm
can proceed, notifying threads that synchronization has been
achieved.

Example 2. We want to compute the sum of a sequence
of unsigned integer values. Assume that the sequence to be
reduced has been split into four subsequences, and partial
aggregate values have been computed by each of the four
threads, as shown in Figure 4. Each thread ti (i ∈ [0 : 3]) enters
the barrier carrying a partial aggregate value pi. The algorithm
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Figure 4. An example of reduction. There are four threads, each proposing 1
as the value to be aggregated. The reduction operator is sum. The rti variable
refers to the partial reduction seen by thread ti, while rni is the value of the
partial reduction inside node ni. The reduction is computed along the dashed
path. Partial reductions are computed while moving from a node to its parent.
Passive nodes sends their partial reduction values to associated active nodes.

performs the same steps as in the standard tournament barrier
implementation show in Figure 2. In addition, at each step
threads in passive nodes pack their partial aggregate value
together with the flag value into their sibling node. Therefore
in the first step t1 and t3 store their partial values p1 and
p3 into nodes n3 and n5. Then, t0 and t2 before moving
to the second step extract from their respective containers
the payload and compute new partial values by aggregating
respectively p0+p1 and p2+p3. In the second step t2 packs its
computed partial value into n1, where it is extracted by t0 and
combined to obtain the global reduction value p0+p1+p2+p3.
This value is published by t0 when it reaches the root node
n0. The exit phase is unmodified with respect to Example 1.

C. Fast Path Optimization

The basic reduction design represents a fast execution path,
which is only semantically correct under the condition that
the reduction data-type fits the size of the container payload.
To handle the remaining cases, a fall-back slow path will be
introduced in Section III-D.

The efficiency of the fast path strictly depends on the ability
of the base tournament barrier algorithm to parallelize the
reduction operation as well as to minimize the number of
atomic operations. The reduction parallelism is achieved by
exploiting the hierarchical structure of the barrier tree, while
independence derives from limiting the entities performing the
partial reductions to two, namely reader and writer. Thus an
f-way tournament barrier [13] would not be as effective as a
base algorithm for our purpose.

The fast path requires only one memory fence. The thread
that reaches the root node performs this memory fence to make
the final result of the reduction visible to all threads.

While the ability to take the fast path is dependent on the
reduction data type, it is independent from the operator used to
aggregate values. As long as partial reduction values fit into the
container payload, atomic read-modify-write operations and
memory fences can be avoided.

Procedure: path management

Require: a partial reduction value data
Require: a passive tournament barrier node node
Ensure: reduction information is communicated to the active

sibling of node
1: sibling ← get sibling(node)
2: if fits(data, payload size) then
3: sibling.container ← pack(data, FAST, flag)
4: else
5: siblings.auxiliary ← data
6: mfence()
7: sibling.container ← pack(0, SLOW, flag)
8: end if

Figure 5. Path management algorithm: when the partially reduced value fits
the payload, the fast path is taken; otherwise a slow path involving a memory
fence is triggered.

D. Slow Path Management

The slow path is designed as an extension of the basic
reduction algorithm to handle the case when the reduction
data-type does not fit the container payload.

To this end, the container layout has been further modified,
as shown in Figure 3(b), to reserve space for a 1 bit field –
the path field. Consequently, the payload field is shrunk by 1
bit. An auxiliary variable is added to the node state to hold
the partial reduction value.

Figure 5 shows the pseudo-code of the path management
algorithm. When the thread in the passive node needs to
propagate the reduction value to the thread associated with
the active sibling, the management algorithm is invoked. If
the partial reduction does not fit into the payload (line 2), it
is stored into the auxiliary variable (line 5) associated with
the active sibling of the current node. Then a memory fence
is issued (line 6). Finally the flag and path fields of the
container are set.

Correspondingly, active nodes detect where to read the re-
duction partial value by reading the path bit of their container.
If the path bit is set, the slow path has been taken, and the
reduction partial value can be found in the auxiliary variable
associated with the active node. Otherwise, the fast path has
been executed – the reduction partial value is packed into the
payload (line 3).

Note that the memory fence is necessary to guarantee that
the partial reduction value is stored into the auxiliary variable
before the flag and path bits are set, but induces an increased
latency. Such fence instructions are not issued on reductions
performed using the fast path, since in this case the partial
reduction values and the flags are written atomically.

Since modern processors are usually 64-bit based, the
payload is large enough to hold partial reduction values of
most native scalar data-types. Therefore the slow path is rarely
taken. In the next Section, we show how to deal with larger
data types and still benefit from the fast path.



E. Compact Data Representation

Taking the fall-back slow path is not always necessary when
the data size is too wide by just 2 bits. As an example, consider
a reduction over 32-bit unsigned integers on a 32-bit machine.
Since we use 1 bit to represent the flag and 1 for the path field,
the payload is not wide enough to store a 32-bit unsigned
integer. Thus, in the many cases where the values involved
in the reduction never exceed 230 − 1, we could still use the
fast path – the same might not be true in the case of signed
integers, though.

The packing function used to store the partial reduction
values into the payload is therefore parametrized with respect
to the reduction data type and values. When working with
the widest unsigned integer type that allows atomic read/write
access, the packing function checks whether the value can
actually fit into the payload (i.e., the two most significant bits
are not set).

In these cases, the algorithm is not forced to take the slow
path over all nodes – path selection strictly depends on the
actual value of the reduction in each active thread. If a partial
reduction value follows a slow path, this does not force a
slow path for the other threads. In many cases, such as when
a reduction is used to sum partial counters, it is more likely
to overflow payload bounds only in the last rounds of the
algorithm, which also involve only few threads, thus using a
fast path in most nodes of the barrier tree.

To exploit this path optimization in the very common case
where reductions are performed over word-size floating point
values, we need to recover two bits from the floating point rep-
resentation, without losing precision. IEEE double precision
floating point numbers [14] fp are represented over 64 bits,
〈fp63 . . . fp0〉, with the following interpretation: sign = fp63
holds the sign, exp = 〈fp62 . . . fp52〉 represent the biased
exponent, and all other bits hold the mantissa (except the first
digit, which is implicitly set at 1). Thus fp represent the float-
ing point number (−1)sign × 2exp−1023 × (1.0 +mantissa).

To preserve precision, the algorithm cannot simply discard
the least significant bits of the mantissa. We therefore operate
in the same way as for the integers, assuming implicit values
for two bits. These bits, and the relative assumed values, must
be chosen to maximize the execution frequency of the fast
path.

The distribution of mantissa bits is hard to predict, and
making the sign implicit would limit the fast path to just
positive or negative values. Thus, we have to choose two
bits from the exponent. Since the exponent is biased, the first
two bits of the exponent partition the space of floating point
numbers in four equally sized subspaces. The 102 subspace
contains exponents ranging from 1 to 512, making it a good
candidate for the assumed value. The 112 subspace represents
very large numbers (in modulo), that are expected to appear
late if at all in the reduction, while 002 represents very small
values, which would often be overshadowed by larger values
early in the partial computations. Finally, the 012 subspace
contains exponents between −511 and 0, which makes it

an excellent candidate, since it represents most of the range
(2,−2) (excluding the values with a modulo close to zero),
which is suitable for many computations.

In the end, the choice between 012 and 102 mostly depends
on the application domain. For the experiments reported in
this paper, we use the 012 setup.

F. Nowait Reductions

Sometimes, it is necessary to aggregate different variables
at a synchronization point, and there are no data dependencies
among the different reduction operations. In the case of
multiple consecutive reductions, we could still use a combined
reduction/barrier operation for each reduction operation. How-
ever, this scheme enforces some useless synchronizations, as
once a thread has reached a passive node and has sent its
reduction partial value to its active sibling, it is no longer
necessary to wait at the barrier, as synchronization is not
actually needed except in the last reduction. We call this kind
of reduction a nowait reduction.

Nowait reductions are easily expressed within OpenMP
programs. Work-sharing constructs can be tagged with the
nowait clause to avoid a barrier operation before leaving
the construct. If a reduction clause is also present, our
combined barrier algorithm can be executed in nowait mode to
compute the reduction value, issuing fewer atomic instructions
than the standard implementation.

The base algorithm has been modified to support nowait
reductions. A thread ti reaching a passive node sends the
reduction partial value to its sibling tj , and starts waiting
for a synchronization achieved signal. Once notified, thread tj
performs the local aggregation pass, and then releases thread
ti before moving to the parent node. This allows ti to leave
the barrier earlier with respect to the base algorithm, and the
exit phase is not performed at all.

This scheme keeps only those threads that are actually
working to compute partial values of the reduction in the
barrier, while all other can proceed to the next program
statement. When the following statement is also a combined
barrier/reduction operation, reductions are pipelined.

When operating in nowait mode, the thread reaching the tree
root does not issue any memory fence, since synchronization is
not needed, and so publishing the reduction global value is not
mandatory. Consequently, if global synchronization is needed,
the last barrier operation cannot be performed in nowait mode.

IV. EXPERIMENTAL EVALUATION

In this Section we provide an experimental evaluation of the
proposed technique. While there is no standard suite dedicated
to reduction benchmarking, the three most popular suites all
include one benchmark specifically chosen to measure the
effectiveness of this operation. To supplement these bench-
marks, we also employ micro-benchmarks to measure specific
properties.



A. Benchmarks

We select a set of benchmarks from the most popular
suites targeting shared memory parallel applications: SPEC
OMP2001 [15], NAS [16], and PARSEC [2]. Fürlinger et
al. [4] show the bottlenecks for the SPEC OMP2001 bench-
marks. According to their analysis, 312.swim m and 310.wup-
wise m are the only benchmark in the suite where reductions
have a significant impact, though 310.wupwise m uses com-
plex data types, and thus is not optimizable in our framework,
since we need to carry the payload in an atomically accessible
data type, not just a data type fitting the cache line. PARSEC
and NAS also provide a single interesting benchmark each,
streamcluster and cg.

In addition to evaluation on benchmark applications, syn-
thetic micro-benchmarks are useful to analyze the perfor-
mance properties of the proposed reduction design. The
only well known micro-benchmark suite for OpenMP con-
structs is EPCC [17]. The EPCC syncbench benchmark is
designed to stress reduction computations. Its kernel is an
omp parallel region. However, the GCC OpenMP im-
plementation introduces implicit barriers at both region start
and end. Since the region body in the benchmark does not
perform any relevant computation, GCC-induced synchroniza-
tions dominate the benchmark runtime, making it all but
impossible to use it for its designated purpose. Moreover,
syncbench does not help in understanding the behavior of the
reduction design. Therefore, we employ four synthetic micro-
benchmarks.

Table I shows the resulting benchmark set, characterized by
the dynamic count of reduction operations, as well as by the
type of reductions and the data types involved. The set covers
all interesting data types: integers and floating point numbers,
in the latter case including both single and double precision.
Each reduction involves

B. GCC Optimization

All benchmarks except streamcluster are parallelized ex-
ploiting OpenMP directives. Thus, we have introduced com-
piler support for our combined barrier and reduction imple-
mentation in GCC. When a reduction clause that can be opti-
mized is found, a GCC optimization pass identifies the barrier
operations executed after the reduction, and replaces both with
the invocation of our combined reduction and barrier. To this
end, we have also augmented the GCC OpenMP runtime,
libgomp, with our barrier implementation. To measure the
efficiency of the combined barrier and reduction (and not the
efficiency of the barrier alone), we still rely on the default
barrier implementation (a central counter barrier) in all cases
except those where the combined barrier and reduction is used.

C. Experimental Setup

The experimental campaign has been conducted on a AMD
NUMA machine with four nodes, each a quad core Opteron
8378 processor. Each core has a 64KBytes L1 data cache, a
64KBytes L1 instruction cache, and a unified L2 512KBytes
cache. All cores within a node share an unified 6MBytes L3

cache. Cache line size is 64Bytes Inter-node communication
is supported by a fully-connected network.

All benchmarks are compiled with the GCC 4.6 compiler in
two flavors: base and peak. Base compilation is the reference
execution obtained using an unmodified GCC compiler and
runtime, while peak compilation applies optimization to use
our combined reduction-barrier.

For each flavor, we register both the execution times,
summarized in Figure 6 and the number of atomic operations
performed, shown in Figure 7. All benchmarks are run with
a number of threads varying from 1 to 16 – the maximum
available hardware parallelism.

The fast micro-benchmark stresses the execution of the fast
path. Conversely the slow micro-benchmark always triggers
the slow path. The mixed micro-benchmark evaluates the case
where execution starts from the fast path and then triggers
the slow path. Finally, the multi micro-benchmark targets the
nowait reduction behavior in the case of multiple reductions
in the same loop.

In all cases, we compare our design with the libgomp base-
line. The results show that for the fast path and the multiple
nowait reductions the number of atomic operations is very low
and scales well over a larger amount of threads. However,
the multi micro-benchmark shows that greater benefits are
achieved when nowait reductions are involved since in this
case our design significantly reduces the amount of synchro-
nization, thus obtaining a major performance improvement
over the libgomp baseline.

On the other hand, the slow and mixed micro-benchmarks
show that our design does not significantly degrade perfor-
mance even when the slow path is triggered.

D. cg

The cg benchmark computes the eigenvalues of a sparse
matrix using the conjugate gradient method [16], relevant to
the field of computational fluid dynamics. The structure of
the code includes a top-level loop that contains an OpenMP
parallel region. The parallel region computes the aggregate
value used in subsequent loop iterations by means of a
reduction at the end of the region. It is important to note that an
omp master construct is used to compute an intermediate
aggregate value, and an explicit barrier is used to block all
other threads.

We have executed the benchmark using the C data set.
Even if our reduction implementation is effective in re-

ducing the number of issued atomic operations, as shown in
Figure 7, the run-time is dominated by the omp master
sections, thus run-times do not scale well.

E. 312.swim m

This benchmark numerically solves a shallow water mod-
elling problem relevant to weather prediction [15]. It repeat-
edly executes a computationally intensive loop body contain-
ing a parallel OpenMP region. At the end of the parallel region
three reductions are computed.



Table I
BENCHMARK CHARACTERIZATION: DYNAMIC COUNT OF REDUCTIONS, OPERATORS AND DATA TYPES INVOLVED.

Benchmark Suite Field Language Reductions Operator Data Type Data Size
(bits)

cg (class C) NPB Fluid dynamics Fortran 3900 + floating point 64
312.swim m SPEC OMP2001 Weather prediction Fortran 2400 + floating point 64
streamcluster PARSEC Online clustering C 4235 + unsigned integer 32

fast Micro-benchmark C 50000 & unsigned integer 64
slow Micro-benchmark C 50000 & unsigned integer 64

mixed Micro-benchmark C 50000 + unsigned integer 64
multi Micro-benchmark C 50000 & unsigned integer 64
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Figure 6. Execution time speedup over the baseline.

Our algorithm generates two nowait reductions followed by
a combined reduction-barrier.

As shown in Figure 6 and 7 the number of atomic operations
performed by the peak version is always lower than the
baseline, while run-times are lower or equal to the baseline
when working with more than 4 threads.

When working with only few threads, atomic operations
are often uncontested. Thus, the base implementation can
outperform the peak implementation in these cases. On the
other hand, when the number of threads grows the performance
of the peak optimization stabilizes and are always better than
the baseline.

F. streamcluster

The streamcluster benchmark solves the online clustering
problem [2] relevant to the field of data mining. It periodically
consumes a set of data items that are processed in parallel. An
aggregate value is computed to find potential clusters. Sets of
data items are processed within a parallel region implemented
by means of a set of threads. The computation is organized in
phases delimited by barriers. Several reduction operations are
used to compute the aggregate values.

As shown in Figure 6 and 7 the number of atomic operations
performed by the peak implementations is always lower than
the baseline, and the same holds for run-times.

Since the benchmark employs a monitor structure, it has
inherent limits to the available parallelism.

V. RELATED WORK

In the context of distributed computing, where communica-
tion is more expensive than in shared memory architectures,
the MPI standard [18] includes the notion of collective oper-
ations to perform multiple operations in one step, and reduce
the number of exchanged messages.

Shirako and Sarkar [19] introduce the concept of phaser
accumulator to combine reduction and barrier operations in
presence of dynamic parallelism. They rely on atomic read-
modify-write instructions to send reduction partial values
safely to the phaser. They also propose a tree-like structure for
phasers, with the goal of improving phaser scalability [20].

The key difference between our work and the one by
Shirako and Sarkar [20] is that we target a static workload and
focus on enabling the fast path as much as possible through
compact data representation. Shirako and Sarkar [20], on the
other hand, focus on the ability to scale dynamically, and
therefore the synchronization tree must be specified. Pipeline
reduction is another optimization that is only available in our
design.

Shirako and Sarkar [20] compare their work with the
OpenMP runtime using the EPCC Syncbench [17]. This makes
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Figure 7. Number of atomic operations saved over the baseline.

comparison with our work difficult both because of the charac-
teristics of the EPCC Syncbench described in Section IV-A and
the different goals, as our work is geared towards a language
agnostic reduction design.

Intel TBB [21] employs a similar structure to Shirako and
Sarkar [20], with a costly dynamic creation of the reduction
tree.

Chun and Xuejwen [22] address the optimization of barriers
and reductions with a different approach – rather than handling
the fast paths at runtime, they rely on new primitives for ex-
pressing constrained forms of barrier and reduction constructs.

VI. CONCLUSIONS

In this paper, we have proposed a reduction design to take
advantage of coupling with a barrier synchronization. Our
design exploits the unused space in the flag variables of a
tournament barrier to carry a partial reduction value, thus
reducing the amount of atomic operations.

Our experimental campaign shows a significant reduction
in the number of atomic operations employed to perform the
reductions, as well as a speedup of 1.53x on the 312.swim m
and 4.02x on the streamcluster benchmark.

Future directions for this research include affinity-guided
association of threads to barrier tree leaves, as well as an
adaptive data-compaction method to increase the frequency
of the fast path further.
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