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State of the Art Solutions
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Reduction
Design to
Minimize

Atomic

Operations Partial indexes can be combined/reduced in different ways:

By master thread
m Explicit bottleneck
By each thread using atomic Read-Modify-Write
Instructions
m Stress cache coherency algorithm

Introduction

Using fast barrier synchronization instructions

m Need special purpose hardware
m Need specially designed aggregation algorithm
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Proposed Reduction Design

Merging Reduction and Barrier Synchronization

An Optimized Key idea:

Reduction
Design to . . . .
Minimize m Merge reduction and barrier synchronization

Atomic

Operations m Exploit unused bits in synchronization data to carry partial
reduction values

Target barrier synchronization algorithm: tournament barrier

m Scalable: avoid RMW instructions by construction

m Synchronization tree can be exploited to implicitly
parallelize reduction computation

Reduction
Optimization

m Synchronization tree nodes contain exploitable unused
space: only 1 bit used

To achieve reasonable performance:

m Data aligned in memory for faster loads/stores
m Data padded to avoid false-sharing effects



Proposed Reduction Design

Tournament Barrier Review
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Proposed Reduction Design

Exploiting Tournament Barrier for Reductions

An Optimized
Reduction Partial reductions computed together with barrier execution:
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Implementation Details
Node Layout
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Payload reduction partial value

Flag needed by barrier synchronization



Design Optimizations

Packing More Data

An Optimized . . . .
e What if value type size is greater than payload type size?
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Fitting the Payload Choosing the Path
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into payload variable

Bet on value assumed by data at run-time:

fast path ignore two MSB, if they are 0

slow path use a slower algorithm, otherwise




Design Optimizations
Slow Path Management

An Optimized
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Design to At runtime, partial reduction value does not fit payload size:
Atomic

Operations m An auxiliary variable is needed for each node

m Coherency forced via memory fences

Container Extended Layout
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Design Optimizations

Nowait Reductions
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Multiple Reductions in OpenMP

#pragma omp for reduce(+:a,b)
for(i = lw; i < up; ++1i)
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Nowait Reductions
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Consider the case of multiple aggregate values to compute:

Multiple Reductions in OpenMP Compiled

#pragma omp for reduce(+:a,b) ..

for(i = lw; i < up; ++i) lock ();
a += a_priv;
b += b_priv;
unlock () ;
barrier ();
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Design Optimizations

Nowait Reductions

eNSE  Consider the case of multiple aggregate values to compute:
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Multiple Reductions in OpenMP Compiled

#pragma omp for reduce(+:a,b) ..

for(i = lw; i < up; ++i) lock ();
a += a_priv;
b += b_priv;
unlock () ;
barrier ();

nowait_barrier_reduce(&a, a_priv);
barrier_reduce (&b, b_priv);
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Design Optimizations

Nowait Reductions

eNSE  Consider the case of multiple aggregate values to compute:
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Multiple Reductions in OpenMP Compiled

#pragma omp for reduce(+:a,b) ..

for(i = lw; i < up; ++i) lock ();
a += a_priv;
b += b_priv;
unlock () ;
barrier ();

 No need for

synchroniza-

nowait_barrier_reduce (&a, a_priv); tion except
barrier_reduce (&b, b_priv);
for last
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Synthetic Benchmarks

Testing the Optimized Design Features
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Reduction Benchmarks
From NAS, SpecOMP, Parsec
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Final Remarks
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Atomic An optimized reduction design:

Operations

m combine reduction with barrier synchronization

m merging the two operations exposes more optimization

opportunities

m optimization viable on shared memory multiprocessors with
considerable number (> 16) of independent processors

Future directions:

Conclusion

m Topology aware synchronization/reduction tree

m Adaptive data-compaction method
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Questions are welcome
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