An Optimized
Reduction
Design to

Minimize
Atomic
Operations

An Optimized Reduction Design to Minimize
Atomic Operations

Ettore Speziale Andrea Di Biagio Giovanni Agosta

Politecnico di Milano

May 20, 2011

S5
¥ "’ﬂ@ Contents
/!

An Optimized
Reduction
Design to
Minimize

Atomic
Operations

Introduction

Reduction Optimization

Conclusion

An Optimized
Reduction
Design to
Minimize

Atomic
Operations

Introduction

Introduction

Motivating Scenario

Reduction Operations in Massively Parallel Programs

An Optimized
Reductio H 1 1 -
Saran High-performance applications process huge amounts of data:
Minimize
Atomic m Need to extract aggregate values

Operations

Aggregation
ta Data Set
L 7
Introduction
O

Aggregate Value

Motivating Scenario

Reduction Operations in Massively Parallel Programs

An Optimized
Reductio H 1 1 -
Saran High-performance applications process huge amounts of data:
Minimize
Atomic

] m Need to extract aggregate values
Operations

Spe b
Andrea Di

Aggregation Parallelization

Data Set Data Set
Introduction
Aggregate Value Partial Partial Partial Partial
Value Value Value Value
Aggregate Value

Barrier

State of the Art Solutions

An Optimized
Reduction
Design to
Minimize

Atomic

Operations Partial indexes can be combined/reduced in different ways:

By master thread
m Explicit bottleneck
By each thread using atomic Read-Modify-Write
Instructions
m Stress cache coherency algorithm

Introduction

Using fast barrier synchronization instructions

m Need special purpose hardware
m Need specially designed aggregation algorithm

An Optimized
Reduction

Design to
Minimize
Atomic
Operations

Reduction Optimization

Reduction
Optimization

Proposed Reduction Design

Merging Reduction and Barrier Synchronization

An Optimized Key idea:

Reduction
Design to
Minimize m Merge reduction and barrier synchronization

Atomic

Operations m Exploit unused bits in synchronization data to carry partial
reduction values

Target barrier synchronization algorithm: tournament barrier

m Scalable: avoid RMW instructions by construction

m Synchronization tree can be exploited to implicitly
parallelize reduction computation

Reduction
Optimization

m Synchronization tree nodes contain exploitable unused
space: only 1 bit used

To achieve reasonable performance:

m Data aligned in memory for faster loads/stores
m Data padded to avoid false-sharing effects

Proposed Reduction Design

Tournament Barrier Review

An Optimized
Reduction

Design to Four threads want to achieve synchronization:

rnament Barrier Example

Minimize
Atomic
Operations

Reduction

Optimization

to t t2 t3

Proposed Reduction Design

Exploiting Tournament Barrier for Reductions

An Optimized
Reduction Partial reductions computed together with barrier execution:

Design to
Reduce and Synchronize

Minimize
Atomic
Operations

Reduction

Optimization

to ty t2 t3

Global reduction available at ng node

Implementation Details
Node Layout

An Optimized
Reduction
peom Each node is atomically accessible:
inimize
Atomic

Operations m A native integer
Et . .
Spe m Cache line aligned
Andrea Di
ainer Layout
container
|
Optimization
payload flag

Payload reduction partial value

Flag needed by barrier synchronization

Design Optimizations

Packing More Data

An Optimized
e What if value type size is greater than payload type size?
esign to
Minimize
Atomic
Operations

Fitting the Payload Choosing the Path

!

value
Andrea Di

i

Xy10l...11

Yes No
value < olen(payload)
101 11
f——
Reduction —
payload pack value use auxiliary

Optimization

into payload variable

Bet on value assumed by data at run-time:

fast path ignore two MSB, if they are 0

slow path use a slower algorithm, otherwise

Design Optimizations
Slow Path Management

An Optimized
Redyction
Design to At runtime, partial reduction value does not fit payload size:
Atomic

Operations m An auxiliary variable is needed for each node

m Coherency forced via memory fences

Container Extended Layout

Andrea Di

auxiliary

) J

T 1

Reduction | 01101 .. .11 |
Optimization

container

L J

T 1

00000. . .00

Akl kA

payload path flag

Design Optimizations

Nowait Reductions

An Optimized . .
Reduction Consider the case of multiple aggregate values to compute:
Design to
Minimize

Atomic
Operations

Multiple Reductions in OpenMP

#pragma omp for reduce(+:a,b)
for(i = lw; i < up; ++1i)

ta

Reduction

Optimization

Design Optimizations

Nowait Reductions

An Optimized
Reduction
Design to
Minimize

Atomic
Operations

Consider the case of multiple aggregate values to compute:

Multiple Reductions in OpenMP Compiled

#pragma omp for reduce(+:a,b) ..

for(i = lw; i < up; ++i) lock ();
a += a_priv;
b += b_priv;
unlock () ;
barrier ();

Reduction

Optimization

Design Optimizations

Nowait Reductions

eNSE Consider the case of multiple aggregate values to compute:

Reduction
Design to
Minimize
Atomic
Operations

Multiple Reductions in OpenMP Compiled

#pragma omp for reduce(+:a,b) ..

for(i = lw; i < up; ++i) lock ();
a += a_priv;
b += b_priv;
unlock () ;
barrier ();

nowait_barrier_reduce(&a, a_priv);
barrier_reduce (&b, b_priv);

Reduction

Optimization

Design Optimizations

Nowait Reductions

eNSE Consider the case of multiple aggregate values to compute:

Reduction
Design to
Minimize
Atomic
Operations

Multiple Reductions in OpenMP Compiled

#pragma omp for reduce(+:a,b) ..

for(i = lw; i < up; ++i) lock ();
a += a_priv;
b += b_priv;
unlock () ;
barrier ();

 No need for

synchroniza-

nowait_barrier_reduce (&a, a_priv); tion except
barrier_reduce (&b, b_priv);
for last

Andrea Di

Reduction

Optimization

aggregate

Synthetic Benchmarks

Testing the Optimized Design Features

An Optimized
Reduction
peom Baseline is GCC 4.6 libgomp !, reductions via RMW

inimize
Atomic
Operations

Saved RMW Instructions Speedups
|:| Dfast |:| DslowD [] mixed I I multi |:| DfaSCD 0 sIowD [] mixed I I e

1.6 - *
1.4 |- *
1.2 - *

Reduction

Speedup

Optimization

Saved Atomics

Threads Threads

1Central counter barrier

Reduction Benchmarks
From NAS, SpecOMP, Parsec

An Optimized
Reduction
Design to

Minimize The streamcluster benchmark employs master reduce

Atomic
Operations

ved RMW Instructions Speedups
|:| D cg D D 312.swim-m D D streamcluster |:| D cg D D B2 s D D Shcemasiar

109] T T T 3 : : : : :
10° | 4l .
g g E
‘£ 7L .
. g L0 & E S 3 N
Reduction P I : 5
Optimizati 108 £ E 3
ptimization E E E (;)-’_
§ 10° ¢k 2 |
10 | 5 1} y
1 2 4 8 16 1 2 4 8 16

Threads i

Contents

An Optimized
Reduction
Design to
Minimize

Atomic
Operations

Conclusion Conclusion

Final Remarks

An Optimized
Reduction
Design to
Minimize
Atomic An optimized reduction design:

Operations

m combine reduction with barrier synchronization

m merging the two operations exposes more optimization

opportunities

m optimization viable on shared memory multiprocessors with
considerable number (> 16) of independent processors

Future directions:

Conclusion

m Topology aware synchronization/reduction tree

m Adaptive data-compaction method

That's All, Folks!

An Optimized
Reduction
Design to
Minimize

Atomic
Operations

L
]

Questions are welcome

Conclusion

	Introduction
	Reduction Optimization
	Conclusion

