
Exploiting Thread-Data Affinity In OpenMP
with Data Access Patterns ?

Andrea Di Biagio, Ettore Speziale ??, and Giovanni Agosta

Dipartimento di Elettronica ed Informazione, Politecnico di Milano
andrea.dibiagio@gmail.com, {speziale,agosta}@elet.polimi.it

Abstract. In modern NUMA architectures, preserving data access lo-
cality is a key issue to guarantee performance. We define, for the OpenMP
programming model, a type of architecture-agnostic programmer hint to
describe the behaviour of parallel loops. These hints are only related
to features of the program, in particular to the data accessed by each
loop iteration. The runtime will then combine this information with ar-
chitectural information gathered during its initialization, to guide task
scheduling, in case of dynamic loop iteration scheduling. We prove the
effectiveness of the proposed technique on the NAS parallel benchmark
suite, achieving an average speedup of 1.21x.

Current trends in computer architectures tend to increase the number of
cores per chip to cope with the power and frequency walls while exploiting the
transistor density increase. This is driving designers towards multi- and many-
core architectures, where Non-Uniform Memory Access (NUMA) designs are
needed [9,2]. In NUMA architectures, cores incur in greater delays when ac-
cessing non-local memories. Since NUMA machines preserve the shared memory
abstraction, it is possible to program them using programming models such as
OpenMP [3], which hide the complexity of the underlying memory hierarchy.

To achieve performance in NUMA architectures, it is essential to provide
data access locality, that is, data located in a given node are accessed as much
as possible from the cores of the same node, and as little as possible from the
other ones [14,21]. Recent works targeting OpenMP on Linux focus on exploiting
specialized page allocation policies [4] such as explicit data distribution, which
allows the programmer to select a precise distribution to be implemented at
initialization time. The next-touch policy, introduced in [8,6], allows dynamic
data relocation by exploiting memory protection mechanisms.

However, such works incur in one or more of the following drawbacks: they
rely on programmer knowledge of the underlying architecture, thus negating a
major benefit of OpenMP, architecture independence [15]; they lack dynamism,
since they provide only a single data distribution strategy which might not cover

? This work was supported in part by the European Commission under Grant
2PARMA FP7-248716 and ARTEMIS-SMECY.

?? This author was supported in part by a grant from ST Microelectronics.

all the access patterns the program employs during different phases of its exe-
cution; or, they do not deal with workload balancing, which in turn adversely
affects irregular parallel applications.

In this work, we take into account these issues, providing a solution to main-
tain thread-data affinity across the lifetime of the application, which relies on
programmer hints describing only the application behavior, and exploiting them
through a specialized runtime, balancing the workload by means of work-stealing.

The rest of this paper is organized as follows. Section 1 introduces the syn-
tax and semantics of the proposed hints, while Section 2 provides details on
our runtime design and implementation, and Section 3 provides an experimen-
tal evaluation. Finally, Section 4 provides a brief survey of related works, and
Section 5 draws some conclusions and highlights future research directions.

1 The Data Access Pattern Approach

The current OpenMP standard provides support for parallel loops through the
omp for and omp do directives 1. The parallel loop syntax is restricted to force
the loop bounds to be loop invariants, since the runtime must always be able
to evaluate the iteration space. Once the iteration space has been computed,
iterations are first grouped into chunks 2 and then mapped to the active threads
of the parallel team according to the scheduling policy implemented by the run-
time. Programmers can influence the behaviour of the runtime system only by
forcing a iteration scheduling policy and specifying a minimum chunk size.

Even though OpenMP allows the programmer to choose among different
scheduling strategies, to address the problem of mapping iterations over the
threads in a team, there is no support for expressing thread-data affinity [5,19].

The key idea of our approach is to allow the runtime to identify the portion of
data which will be accessed by the iterations of a parallel loop. These iterations
will then be scheduled to threads according to a novel dynamic scheduling policy,
which will try to preserve locality as much as possible.

To this end, we extend the existing OpenMP parallel loop directive through
a new clause representing the data access pattern, that is the way loop iterations
access the data. The runtime will then use the thread-data affinity information
derived from the data access pattern to improve the existing dynamic iteration
scheduling policy, by scheduling threads on the cores nearest to the memory
where the related data are stored. While automated approaches to page place-
ment do not require changes to the API, identifying and exploiting thread-data
affinity at compile time might not be feasible, and is in general a very complex
task [5]. By contrast, a skilled programmer is able to identify more effectively
the patterns used by threads when accessing data, and thus provide precise hints

1 omp for and omp do model the same type of parallel loop, in C and Fortran respec-
tively. For brevity in the rest of the paper we will refer to omp for but the same
considerations apply to omp do as well.

2 We use the term chunk to refer to a set of iterations as specified in OpenMP [3].

to the runtime. This is, anyway, mandatory if a fine-tuning of the application
performances is desired [4,20,16].

A key difference with respect to previous works [4], including PGAS lan-
guages [18,1], is that to minimize the programming efforts when writing parallel
programs, our approach does not rely on explicit data distribution and exploita-
tion of the processor space.

1.1 Data Access Pattern Definition

A data access pattern binds iterations in a parallel loop with the portion of
memory accessed at runtime. We formally define the data access pattern and
the OpenMP syntactic extension needed to support it as follows.

Definition 1. A data access pattern is an equivalence relation over the elements
of a k-dimensional array data structure. An equivalence class under the data
access pattern relation is called tile. Data access pattern relations are described by
means of pattern clauses, defined by the grammar in Figure 1 and its associated
semantics.

Axiom → pattern(Clause)

Clause → DataStructure [PESeq]

PESeq → PESeq , PatternExpr
| PatternExpr

PatternExpr → RangeExpr | SliceExpr
RangeExpr → Expr : Expr

| Expr | *
SliceExpr → ^ Expr

Fig. 1: Pattern Clause Syntax. Expr is any expression of runtime constants, while
DataStructure can be any array or pointer variable name

In our OpenMP extension, a pattern clause (or, for brevity, a pattern) is
associated to a loop directive. The first argument of a pattern clause is a reference
to the shared data structure that is concurrently accessed by iterations in the
loop. The rest of the pattern clause consists of a sequence of pattern expressions,
one for each dimension. A pattern expression can be either a range expression
or a slice expression. A range expression is used to identify a range of indices in
a given dimension of the data structure, that are associated to all tiles. A slice
expression identifies the size of each tile in a given dimension.

A range expression has the form [n:m]. Both n and m must be loop invariant.
Their value is thus known at runtime before the loop execution starts. The lower
bound of a range expression may be omitted when it matches exactly the lower
bound of the associated dimension. Hence, a pattern expression m is an alias for
[lb:m], where lb is the lower bound of the index for the dimension considered.
The * operator is also a shorthand for [lb:ub], where lb and ub are the lower
bound and the upper bound values of the index for a given dimension. The latter
range expression variants allow a more compact definition of the pattern clause
in many practical cases, but do not add any expressive power.

#pragma omp for collapse (2) \

pattern(A[^RSLICE ,^ CSLICE])

for(i = 0; i < ROWS; i += RSLICE)

for(j = 0; j < COLS; j += CSLICE)

for(k = 0; k < RSLICE; ++k)

for(h = 0; h < CSLICE; ++h)

A[i+k][j+h] = ...;

R
S
L
I
C
E

CSLICE

Fig. 2: Pattern example. Matrix A is accessed in a block-wise fashion by the
collapsed parallel loop

A slice expression takes the form ^n, where n is a runtime constant.
Figure 2 demonstrates the data access pattern semantics. The two slice ex-

pressions define bi-dimensional tiles of size RSLICE × CSLICE on matrix A, thus
representing the block-wise accesses performed by the loop nest.

The mapping between tiles and iterations is defined as follows: if there is
no slice expression in the pattern there is a single tile which is accessed by all
iterations; otherwise, tiles and iterations are associated by a bijective relation,
that depends on both the iteration indices and the sign of the loop increment
expressions. In a normalized loop nest, each slice expression is associated to one
loop index il and the tiles can be ordered with respect to the indices id of the
dimension d associated to the slice expression divided by the tile size n. Iterations
of loop index il are mapped to tiles with id/n = il.

Back to the example in Figure 2, assuming RSLICE = CSLICE = 2, and A a
4 × 4 square matrix, the pattern identifies four tiles. The iterations with index
i = 0 are associated to data items of indices 0 and 1 on the first dimension.
The same holds for loop index j, which is associated to the slice expression
corresponding to the second dimension of A. Thus, iteration i, j = 〈0, 0〉 is
mapped to the data in A[0][0], A[0][1], A[1][0], and A[1][1].

2 Runtime Extensions to Exploit Patterns

To employ the information encoded in the pattern clauses, we propose an exten-
sion of the OpenMP runtime. The runtime analyzes each pattern expressions to
identify the size of the memory tiles accessed by iterations. The tile information
can then be exploited at runtime to group together iterations that will probably
touch the same set of virtual memory pages. Since at runtime the base address
of the patterned data structure is known, it is always possible to identify the set
of memory pages that are expected to be touched by the iterations of the loop.
This is true also for dynamically allocated data-structures for which the size can
be assumed equal to the tile size times the size of the iteration space.

Since the runtime aims at maximizing the number of local accesses, while
avoiding, if possible, to incur in the penalty of long latency due to remote memory
accesses, the information obtained analyzing pattern clauses is used to identify

groups of iterations (blocks) that need to be scheduled together on the same
node. Iterations that access the same memory pages (or different pages physically
mapped to the same node) are grouped within the same block. The dynamic
scheduling policy is thus driven by the collected pattern information.

The implementation used in this work is based on the libgomp [7] OpenMP
runtime and uses the Linux NUMA API [12] to detect virtual page mappings.

2.1 Iteration Space Partitioning

To exploit the hints provided by the pattern information, the runtime has to
partition the iteration space so to minimize the number of remote accesses.

Finding an optimal partition is known to be NP-complete. Obviously, such
complexity cannot be handled at runtime even with moderate numbers of iter-
ations. Therefore, we propose a straightforward heuristic approach to minimize
the time spent by the runtime in analyzing pattern information while still pro-
viding a good, even if potentially sub-optimal, partitioning. To further reduce
the overhead, we base the partitioning of the iterations of each loop on the
information obtained from a single pattern.

The algorithm implemented in the proposed heuristic approach performs a
linear scan of the iteration space in search of opportunities for grouping adjacent
iterations. Let a and b be two adjacent iterations of the analyzed parallel loop.
Both a and b will be mapped to the same block if at least one of the following
conditions is satisfied: iteration a accesses to the same set of memory pages
touched by iteration b; the set of pages touched by a are physically mapped to a
node that is the same for the pages touched by b; pages touched by both a and
b are not physically mapped to any node in the system.

Let us now formally introduce the concept of iteration block.

Definition 2. Let lb and ub be respectively the lower and upper bound of the
iteration space I of the analyzed loop. A block of iterations is defined as a range
of indices of the form [base, last], where base ≥ lb and last ≤ ub.

Let B be the set of blocks obtained from the partitioning phase, and let b ∈ B
be a block of iterations. We call r(b) the range of indices described by b.

The runtime limits the maximum number of blocks to reduce the algorithm
complexity while maintaining the required flexibility to cope with irregular work-
loads. The limit has been set, considering the outcome of an experimental cam-
paign, to twice the number of available nodes in the system. To cope with the
imposed constraints, different blocks of iterations may be merged.

When no pattern clause is specified for a given parallel loop, the iteration
space is evenly partitioned into a number of blocks equal to the number of
available nodes. Since the output of the partitioning algorithm is not necessarily
the optimal partition, we later introduce a runtime work stealing mechanism to
reduce the effects of an unbalanced distribution of the workload.

2.2 A Dynamic Scheduling Policy for Pattern Enabled OpenMP
Runtimes

At the end of the partitioning stage, the iteration space of the parallel loop is
divided into blocks of iterations. When a loop has associated pattern information,
the runtime knows exactly which pages are touched by each iteration block. The
runtime assigns a work queue to each NUMA node. The work queue is used to
store information about iteration blocks. A global work queue is reserved for
those blocks that are not related to any of the active NUMA nodes.

The algorithm that maps blocks to work queues uses the iteration-data affin-
ity information coming from the analysis of the pattern. Each thread of the
parallel team analyzes the set of blocks in parallel. Let b be a block and let Pb

be the set of pages touched by iterations of b. The algorithm counts how many
pages in Pb are mapped to each node. The node with the highest number of
mapped pages is finally selected as the target node for the block b. If none of
the nodes is related to any of the pages in Pb, b is assigned to the global queue.

n0 n1

global queue

n2 n3

next last

local queue

Fig. 3: Runtime system with four
distributed work queues and a
global queue

LF GF SI

local queue.is empty
∧

next == last

global queue.is empty
∧

next == last

Fig. 4: Runtime behaviour of a sub-
team. Local Fetch (LF): fetch blocks
from the local queue of the lo-
cal node; Global Fetch (GF): fetch
blocks from the global queue; Steal
Iterations (SI): steal blocks from
the local queue of neighbour nodes

Figure 3 shows the internal state of the runtime system in the case of a cc-
NUMA architecture with four nodes. The internal state of each node is composed
of a working queue called local queue and two integer fields next and last, used
respectively to store the lower bound and the upper bound index of the range
of iteration indices associated to the current block.

At runtime, parallel teams are split into sub-teams, each associated to a
distinct NUMA node. A sub-team associated to a node n is composed only by

threads of the team that are running on node n. Threads are mapped to sub-
teams at runtime when a new team starts. The runtime behaviour of a sub-team
can be formally described by a finite state automaton as shown in Figure 4.

Each sub-team starts executing in the initial state LF . Threads of a sub-
team whose working state is LF , are only allowed to fetch blocks from the local
work queue of the node in which they are running. When the local block queue is
empty and no iterations are available in the current block, the sub-team moves
from LF to GF, where the sub-team fetches blocks from the global queue. In both
states, iterations are selected using the Guided Self Scheduling algorithm [17].

The idea is to exploit the locality of accesses preventing when possible threads
from accessing remote pages. To this end, at first threads are forced to execute
iterations from the local queue to maximize the probability of local accesses.
Only when there are no more iterations associated to the local node, threads start
fetching iterations from the global queue. Since global queue only stores blocks
related to virtual pages that are still not mapped, there is an high probability
that threads accessing the global queue will own those pages because of the first-
touch policy implemented by the OS. The first-touch policy is the default policy
for NUMA-aware Linux systems. It consists of placing memory pages on those
nodes that first access the data during the program execution.

2.3 Work Stealing Strategy

When the global queue is empty and there are no iterations available in the
local queue, the sub-team transitions from GF to SI. While in SI, threads start
stealing blocks of iterations from the queues associated to other nodes. According
to the implemented work stealing policy, threads in SI start stealing from the
work queues of the nearest neighbour nodes. Since the runtime is aware of the
distance between nodes (identified by means of calls to the Linux NUMA API),
each sub-team knows which nodes are the best candidates for stealing.

The work stealing procedure iterates over the neighbours set of a node n in
search of available blocks of iterations. By default the current neighbour node
(nneigh) is initially set equal to the node that hosts the current sub-team (n).

As long as there are iterations to fetch from the work queue of nneigh, threads
fetch new iterations from their work queues. Eventually, when the work queue
of the current neighbour becomes empty, a new neighbour is selected.

The selection strategy is based on the NUMA distance between nodes of
the underlying architecture. In the case shown in Figure 3, 〈dist(n0, ni)|i ∈ [0 :
3]〉 = 〈0, 1, 1, 2〉. The distance relation dist(n, ni) imposes a partial ordering of
the nodes ni ∈ K. We need, for each node, a sequence of nodes to poll for the
next neighbour, called a neighbours vector. To obtain the vectors, we make this a
total ordering by imposing that, when dist(n, ni) = dist(n, nj), ni ≺ nj if i < j.

3 Experimental Results

In this Section, we provide an experimental validation of our approach. The
main findings are that the proposed approach based on pattern clauses is able

to consistently reduce the number of remote memory accesses, and that the
reduction directly translates into a significant performance improvement.

The experimental campaign has been conducted on a AMD ccNUMA ma-
chine with four nodes, each a quad core Opteron 8378 processor. Each core has
a two-level private cache hierarchy. L1 cache is composed by a 64KBytes data
cache and by a 64KBytes instruction cache. L2 cache is an unified 512KBytes
cache. All cores within a node share an unified 6144KBytes L3 cache. Inter-node
communication is supported by a ring network topology.

AMD event based counters have been used to measure memory accesses.
Separate runs have been used for performance and memory access profiling, to
avoid memory access counter sampling overhead in timing measurements.

3.1 Benchmark Suite

We employ the NAS Parallel Benchmark suite, OpenMP version 3.3 [11]. We do
not report on DC and EP, since these benchmarks do not have any OpenMP
loop constructs (omp for and omp do). The benchmarks have been modified in
order to make use of dynamic scheduling. Table 1 shows the number of total
loops, dynamically scheduled loops, and loops tagged with the pattern clause.

Table 1: Benchmark characterization

Parallel Dynamic
Bench loops loops Patterns

bt.c 28 14 9
cg.c 18 16 16
ft.b 8 6 6
is.c 9 2 2

Parallel Dynamic
Bench loops loops Patterns

lu.c 26 10 9
mg.b 14 11 11
sp.c 33 20 20
ua.c 68 56 56

We compare the baseline libgomp runtime implementation opportunely ex-
tended to support a Guided Self Scheduling strategy for dynamically scheduled
loop iterations with our optimized runtime. This choice is dictated by the fact
that the libgomp dynamic scheduler provides only poor performance, thus com-
paring with it would result in a significant bias due to Guided Self Scheduling.

For all experiments we use 16 threads, each pinned on a different core.

3.2 Performance Analysis

Table 2 describes the runtime behaviour of the benchmarks, showing the percent-
age of blocks fetched in each of the states of the automaton in Figure 4 along with
the percentage of the execution time spent in loops tagged with pattern clauses.
A high percentage of fetches from local queues denotes a good distribution of the
data structures, which is effectively exploited by the iteration scheduling thanks

to correct pattern information. On the other hand, blocks fetched through work
stealing have higher probability of resulting in remote accesses since they were
originally intended to be executed on a different node.

Table 2: Runtime behaviour

Blocks fetched from
Time in

opt. loopsBench Local Global Steal
[%] [%] [%] [%]

bt.c 65.72 0.01 34.27 90.55
cg.c 99.61 0.03 0.36 87.26
ft.b 76.40 0.00 23.60 66.69
is.c 66.67 0.00 33.33 51.30
lu.c 80.21 0.21 19.58 26.49

mg.b 35.16 22.26 42.58 66.82
sp.c 70.03 0.00 29.97 91.92
ua.c 88.36 0.13 11.51 78.28

Table 3: Speedups

Speedup

Bench Worst Best ∆

bt.c 1.14 1.27 0.13
cg.c 1.81 1.82 0.01
ft.b 1.12 1.19 0.07
is.c 1.00 1.00 0.00
lu.c 1.02 1.05 0.03

mg.b 1.00 1.00 0.00
sp.c 1.18 1.23 0.05
ua.c 1.07 1.08 0.01

Table 3 shows the speedups obtained by our optimized runtime with respect
to the baseline. Two scenarios are provided: Best, where the proposed work
stealing policy based on NUMA distances is used; and Worst, where neighbour
vectors are reversed. This shows that the order of the neighbours counts: the last
column (∆) shows the maximum performance loss in case of random neighbours
selection. However, the results also show that the impact of this policy is not so
large as to make the runtime less effective than the baseline. Thus, the Worst
scenario shows the impact of the iteration scheduling optimization, while the
Best scenario adds the impact of an effective work-stealing policy.

We can see that, for most benchmarks, we obtain a speedup between 1.05x
and 1.27x for the Best scenario. There are three exceptions: MG, IS and CG.

MG is the only benchmark where the initial distribution of frequently ac-
cessed data structures is performed by the master thread alone. Since we rely
on the first-touch policy to provide the initial distribution, a large number of
remote accesses is generated regardless of the iteration scheduling policy. Note
that the pattern definition leads the runtime to place most of the iterations on
the node where the master thread resides, thus leading to a reduced amount of
blocks fetched from local queues.

IS benchmark implements a bucket sort algorithm. Excluding the time spent
in initializing data structures, most of the time is spent on a fast data parallel
loop used to sort keys of each bucket. There are several instances of non-linear
accesses where array indices are obtained from table lookups. This type of access
cannot be optimized, since it is by design hard to predict, to provide the required
randomness. While the proposed technique cannot obtain a speedup, it still does
not impose an overhead with respect to the baseline.

CG obtains the highest speedup, a remarkable 1.82x. It performs sparse ma-
trix multiplication, which can easily lead to irregular accesses. However, the
benchmark provides an initial data distribution that combined with the data ac-
cess pattern information allows a massive improvement in data access regularity,
which immediately translates into a performance improvement.

3.3 Remote Memory Access Analysis

Figure 5 shows the reduction in remote memory accesses obtained by our run-
time with respect to the baseline. Memory access reduction is at the base of
performance improvement, so these results mirror the performance speedups.

b
t.

c
cg

.c

ft
.b

is
.c

lu
.c

m
g.

b
sp

.c
u
a.

c

0

20

40

60

80

100

R
em

o
te

a
cc

es
se

s
[%

]

Base Pattern

(a) Remote accesses percentage

Bench Base Pattern Savings
[%]

bt.c 70,777.56 54,787.53 22.59
cg.c 40,969.86 3,592.73 91.23
ft.b 4,824.42 4,494.31 0.90
is.c 851.71 844.01 6.84
lu.c 37,674.95 32,731.91 13.12

mg.b 2,504.46 2,486.34 0.72
sp.c 269,485.03 192,971.48 28.39
ua.c 115,912.76 85,196.04 26.50

(b) Raw results (millions of accesses)

Fig. 5: Memory accesses performed by benchmarks

It is especially interesting to consider the reduction in CG, where remote
memory accesses are strongly minimized thanks to the pattern information.

In IS, the data access patterns are mostly unpredictable, as memory accesses
are defined through non-affine array functions. This makes it hard to find good
pattern information for most of the parallel loops in the code. While the savings
in terms of remote accesses are small, they are sufficient to offset the overhead
imposed by the pattern evaluation and iteration space partitioning phases.

In MG, most frequently accessed data structures are allocated on a single
node, which forces all threads on other nodes to perform remote accesses. Thus,
no significant reduction is obtained. Moreover, the high amount of global fetches
shows that part of data structures were not preallocated at all.

4 Related Work

Several different approaches are proposed in literature to mitigate the memory
latency penalty due to remote accesses. Some of these approaches rely on the
ability of the runtime system [6] or the OS itself [10] to implicitly trigger the
migration of worker threads to avoid the cost of remote accesses.

Other approaches, such as PGAS languages [18,1] rely on the ability of the
programmer to manually distribute data structures concurrently accessed by
threads at runtime. These languages provide the programmer a mean to force
a specific dynamic page placement policy for those shared data structures that
will be heavily accessed by loops. On the other hand, our solution does not rely
on explicit distribution hints, though it can take advantage of an initial data
distribution provided by means of the first-touch policy.

Dynamic data distribution based on memory protection mechanisms has been
introduced in [8,6,13]. Memory pages forming shared data structures can be
dynamically tagged, to trigger a page migration to the next node touching them
(next-touch strategy). Our approach is orthogonal with respect to this strategy,
since we reduce the number of remote accesses without triggering redistributions.

In [15] the authors propose a dynamic data redistribution solution similar
to [8,6] but based on information akin to our proposed data access pattern,
which is, contrary to our solution, computed at runtime by means of profiling.

5 Conclusions

We propose an optimized OpenMP runtime design for NUMA machines to ex-
ploit thread-data affinity in parallel programs by means of programmer hints
that take into account only the application behavior. Our experimental campaign
shows a reduction in the number of remote accesses for most NAS benchmarks.

The approach could be further improved by removing unnecessary pattern
evaluations when multiple subsequent loops share the same pattern. Moreover,
opportunities for data redistribution could be automatically detected at compile-
time by analysing pattern variations between subsequent loops.

Future extensions could include adding thread migration to handle the cases
of multiple concurrent applications as well as the case of applications with multi-
ple phases, alternating I/O bound phases with CPU bound ones. We also expect
that combining our technique with a next-touch strategy would further reduce
the remote accesses, while limiting the number of pages moved.

Furthermore, identifying patterns requires skill and time. It would be worth
exploring both static analysis and profiling based techniques to provide recom-
mended patterns to the programmer.

References

1. Allen, E., Chase, D., Hallet, J., Luchangco, V., Maessen, J., Ryu, S., Steele Jr.,
G.L., Tobin-Hochstadt, S.: The Fortress Language Specification. Sun Microsystems
(2008)

2. AMD: AMD Direct Connect Architecture (2010), http://www.amd.com/us/

products/technologies/direct-connect-architecture

3. ARB: OpenMP Application Program Interface, version 3.0 (2008), http://www.
openmp.org

4. Bircsak, J., Craig, P., Crowell, R., Cvetanovic, Z., Harris, J., Nelson, C.A., Offner,
C.D.: Extending OpenMP for NUMA Machines. In: SC (2000)

5. Broquedis, F., Diakhaté, F., Thibault, S., Aumage, O., Namyst, R., Wacrenier,
P.A.: Scheduling Dynamic OpenMP Applications over Multicore Architectures.
In: IWOMP. LNCS, vol. 5004, pp. 170–180. Springer (2008)

6. Broquedis, F., Furmento, N., Goglin, B., Namyst, R., Wacrenier, P.A.: Dynamic
Task and Data Placement over NUMA Architectures: An OpenMP Runtime Per-
spective. In: IWOMP. LNCS, vol. 5568, pp. 79–92. Springer (2009)

7. GNU: GNU libgomp (2010), http://gcc.gnu.org/onlinedocs/libgomp/
8. Goglin, B., Furmento, N.: Enabling High-performance Memory Migration for Mul-

tithreaded Applications on LINUX. In: IPDPS. pp. 1–9. IEEE (2009)
9. Intel: Intel QuickPath Architecture (2010), www.intel.com/technology/

quickpath/whitepaper.pdf

10. Jenks, S., Gaudiot, J.L.: Exploiting Locality and Tolerating Remote Memory Ac-
cess Latency Using Thread Migration. Int. J. Parallel Program. 25(4), 281–304
(1997)

11. Jin, H., Frumkin, M.: The OpenMP Implementation of NAS Parallel Benchmarks
and its Performance. Tech. rep., NASA (1999)

12. Kleen, A.: An NUMA API for Linux (2004), http://www.halobates.de/

numaapi3.pdf

13. Lankes, S., Bierbaum, B., Bemmerl, T.: Affinity-On-Next-Touch: An Extension to
the Linux Kernel for NUMA Architectures. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Wasniewski, J. (eds.) PPAM (1). LNCS, vol. 6067, pp. 576–585.
Springer (2009)

14. Marathe, J., Mueller, F.: Hardware Profile-guided Automatic Page Placement for
ccNUMA Systems. In: PPOPP. pp. 90–99. ACM (2006)

15. Nikolopoulos, D.S., Artiaga, E., Ayguadé, E., Labarta, J.: Scaling Non-regular
Shared-memory Codes by Reusing Custom Loop Schedules. Scientific Program-
ming 11(2), 143–158 (2003)

16. Nikolopoulos, D.S., Papatheodorou, T.S., Polychronopoulos, C.D., Labarta, J.,
Ayguadé, E.: A Transparent Runtime Data Distribution Engine for OpenMP. Sci-
entific Programming 8(3), 143–162 (2000)

17. Polychronopoulos, C.D., Kuck, D.J.: Guided Self-Scheduling: A Practical Schedul-
ing Scheme for Parallel Supercomputers. IEEE Trans. Computers 36(12), 1425–
1439 (1987)

18. Rice University: High Performance Fortran Language Specification. SIGPLAN For-
tran Forum 12(4), 1–86 (1993)

19. Robertson, N., Rendell, A.P.: OpenMP and NUMA Architectures I: Investigat-
ing Memory Placement on the SGI Origin 3000. In: International Conference on
Computational Science. LNCS, vol. 2660, pp. 648–656. Springer (2003)

20. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Reichstein, T.: Data and Thread
Affinity in OpenMP Programs. In: MAW ’08: Proceedings of the 2008 workshop
on Memory access on future processors. pp. 377–384. ACM (2008)

21. Tikir, M.M., Hollingsworth, J.K.: Using Hardware Counters to Automatically Im-
prove Memory Performance. In: SC. p. 46. IEEE Computer Society (2004)

http://www.amd.com/us/products/technologies/ direct-connect-architecture
http://www.amd.com/us/products/technologies/ direct-connect-architecture
http://www.openmp.org
http://www.openmp.org
http://gcc.gnu.org/onlinedocs/libgomp/
www.intel.com/technology/quickpath/whitepaper.pdf
www.intel.com/technology/quickpath/whitepaper.pdf
http://www.halobates.de/numaapi3.pdf
http://www.halobates.de/numaapi3.pdf

	Exploiting Thread-Data Affinity In OpenMP with Data Access Patterns

