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Motivating Scenario
Dealing with Non-Uniform Memory Accesses

Current trend in computer designs is towards NUMA
architectures.

Uniform Accesses

cpu0 cpu1

cpu2 cpu3

Non-Uniform Accesses

node0 node1

node2 node3

Memory latency is strongly affected by the network
topology

Remote accesses are slower than local accesses

Exploiting thread-data locality is necessary to minimize
remote accesses
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State of the Art Solutions
Static Techniques

Exploiting memory access pattern information is an hard task:

Static compiler analysis 1

for(i = 0; i < N; ++i)

a[i] = foo(b[i]);

Compiler
can infer

the pattern?

Compute
layout and
schedule

Generate
code

Do not
optimize

Yes No

1E.g. polyhedral analysis
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State of the Art Solutions
More Static Techniques

Some directives can help the compiler:

Explicit memory distribution

!HPF$ PROCESSORS LINEAR( NUMBER_OF_PROCESSORS ())

!HPF$ DISTRIBUTE (CYCLIC) ONTO LINEAR :: A, B

REAL A(N), B(N)

DO I=1, N

A(I) = FOO(B(I))

Getting hard-
ware topology
from directives

Analyze
DISTRIBUTE

directives

Generate layout
and schedule
parametric

on topology
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State of the Art Solutions
Dynamic Techniques

Actual access pattern can be spotted at runtime:

Runtime techniques

.L3:

movl -8(%ebp), %ebx

movl -8(%ebp), %eax

movl -88(%ebp ,%eax ,4), %eax

movl %eax , (%esp)

call foo

movl %eax , -48(%ebp ,%ebx ,4)

addl $1, -8(%ebp)

cmpl $9, -8(%ebp)

jle .L3

Can data
locality be
improved?

Trigger page
redistribution

Yes No
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Proposed Locality Optimization
Combine Pattern Hints with Dynamic Scheduling

Key idea:

Tag data accessed by parallel loops with pattern:

Hint on how data will be accessed

Schedule parallel loops at runtime:

Exploit pattern hints to dispatch iterations as near as
possible to accessed data

Benefits:

Can adapt to different workloads

Minor code modification

Architecture agnostic

Challenges:

Efficient scheduler needed
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Proposed Locality Optimization
Example

By row partitioning:

Pattern Example

node0 node1

node2 node3

0 1 2 3

Iteration space

Scheduler

Pattern analysis#pragma omp for pattern(a[^1, *])

for(i = 0; i < 4; ++i)

for(j = 0; j < 4; ++j) {

a[i][j] = foo(a[i][j]);

if(j < 3)

a[i][j] += bar(a[i][j + 1]);

else if(i < 3)

a[i][j] += baz(a[i + 1][0]);

}

Matrix aMatrix a
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Implementation Details
Runtime Organization

Our dynamic approach does not rely on data distribution:

iterations are scheduled on those nodes who see data
locally

To balance workload, a multi stage scheduling algorithm has
been designed:

threads are split into groups

each group is composed of threads running on a same node

each group is assigned to a local queue of iterations
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Implementation Details
Address Space Partitioning

Upon entering a parallel loop, the iteration space is partitioned
into blocks:

Iteration Grouping

Let I1, I2 two adjacent elements of the iterations space I . They
belong to the same block if:

Access the same set of pages, or

Access to pages mapped on the same node, or

Access to unmapped pages

To minimize the complexity of such algorithm we can enforce a
maximum number of blocks.
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Implementation Details
Block Distribution

The blocks are analyzed in parallel:

Each block is scored with respect to node locality

Blocks moved to local queues corresponding to the node
with the greatest affinity

Blocks with no score assigned to a global queue

Now loop execution can begin.
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Implementation Details
Iteration Dispatching

Each thread executes the same scheduling algorithm:

LF

GF

SI

local queue.is empty
∧

next == last

global queue.is empty
∧

next == last

Local Fetching

Maximize memory locality

Global Fetching

Relies on first-touch policy

Steal Iterations

To further balance workload
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Experimental Evaluation
Experimental Setup

Tests performed on a quad-node quad-core Opteron system:

Interconnect is a square

Tests performed using 16 threads

Prototype implemented for the OpenMP programming model.

The impact of work-stealing strategy has been tested against
two different configurations:

Worst uses the furthest neighbour selection policy

Best uses the nearest neighbour selection policy

Selection policy based on NUMA distances.
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Experimental Evaluation
NAS Benchmarks

Baseline is llvm-gcc 4.2 libgomp
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Experimental Evaluation
Pattern Efficiency

Work Distribution

Blocks fetched from Speedup 2

Bench Local Global Steal Worst Best
[%] [%] [%]

bt.c 65.72 0.01 34.27 1.14 1.27
cg.c 99.61 0.03 0.36 1.81 1.82
ft.b 76.40 0.00 23.60 1.12 1.19
is.c 66.67 0.00 33.33 1.00 1.00
lu.c 80.21 0.21 19.58 1.02 1.05

mg.b 35.16 22.26 42.58 1.00 1.00
sp.c 70.03 0.00 29.97 1.18 1.23
ua.c 88.36 0.13 11.51 1.07 1.08

2W.r.t. neighbour policy



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Contents

1 Introduction

2 Locality Optimization

3 Conclusion



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Final Remarks

Patterns:

enable automatic work distribution

small syntactic extension to the OpenMP programming
model

programmers do not need to explicitly distribute memory
or understanding the system topology

Future directions:

automatic patterns recognition/filtering

integration with page-migration 3 techniques

3E.g. next-touch
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That’s All, Folks!

Questions are welcome


	Introduction
	Locality Optimization
	Conclusion

