
Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Exploiting Thread-Data Affinity in OpenMP
with Data Access Pattern

Andrea Di Biagio Ettore Speziale Giovanni Agosta

Politecnico di Milano

September 2, 2011



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Contents

1 Introduction

2 Locality Optimization

3 Conclusion



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Contents

1 Introduction

2 Locality Optimization

3 Conclusion



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Motivating Scenario
Dealing with Non-Uniform Memory Accesses

Current trend in computer designs is towards NUMA
architectures.

Uniform Accesses

cpu0 cpu1

cpu2 cpu3

Non-Uniform Accesses

node0 node1

node2 node3

Memory latency is strongly affected by the network
topology

Remote accesses are slower than local accesses

Exploiting thread-data locality is necessary to minimize
remote accesses



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Motivating Scenario
Dealing with Non-Uniform Memory Accesses

Current trend in computer designs is towards NUMA
architectures.

Uniform Accesses

cpu0 cpu1

cpu2 cpu3

Non-Uniform Accesses

node0 node1

node2 node3

Memory latency is strongly affected by the network
topology

Remote accesses are slower than local accesses

Exploiting thread-data locality is necessary to minimize
remote accesses



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Motivating Scenario
Dealing with Non-Uniform Memory Accesses

Current trend in computer designs is towards NUMA
architectures.

Uniform Accesses

cpu0 cpu1

cpu2 cpu3

Non-Uniform Accesses

node0 node1

node2 node3

Memory latency is strongly affected by the network
topology

Remote accesses are slower than local accesses

Exploiting thread-data locality is necessary to minimize
remote accesses



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Motivating Scenario
Dealing with Non-Uniform Memory Accesses

Current trend in computer designs is towards NUMA
architectures.

Uniform Accesses

cpu0 cpu1

cpu2 cpu3

Non-Uniform Accesses

node0 node1

node2 node3

Memory latency is strongly affected by the network
topology

Remote accesses are slower than local accesses

Exploiting thread-data locality is necessary to minimize
remote accesses



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

State of the Art Solutions
Static Techniques

Exploiting memory access pattern information is an hard task:

Static compiler analysis 1

for(i = 0; i < N; ++i)

a[i] = foo(b[i]);

Compiler
can infer

the pattern?

Compute
layout and
schedule

Generate
code

Do not
optimize

Yes No

1E.g. polyhedral analysis



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

State of the Art Solutions
More Static Techniques

Some directives can help the compiler:

Explicit memory distribution

!HPF$ PROCESSORS LINEAR( NUMBER_OF_PROCESSORS ())

!HPF$ DISTRIBUTE (CYCLIC) ONTO LINEAR :: A, B

REAL A(N), B(N)

DO I=1, N

A(I) = FOO(B(I))

Getting hard-
ware topology
from directives

Analyze
DISTRIBUTE

directives

Generate layout
and schedule
parametric

on topology



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

State of the Art Solutions
Dynamic Techniques

Actual access pattern can be spotted at runtime:

Runtime techniques

.L3:

movl -8(%ebp), %ebx

movl -8(%ebp), %eax

movl -88(%ebp ,%eax ,4), %eax

movl %eax , (%esp)

call foo

movl %eax , -48(%ebp ,%ebx ,4)

addl $1, -8(%ebp)

cmpl $9, -8(%ebp)

jle .L3

Can data
locality be
improved?

Trigger page
redistribution

Yes No



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Contents

1 Introduction

2 Locality Optimization

3 Conclusion



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Proposed Locality Optimization
Combine Pattern Hints with Dynamic Scheduling

Key idea:

Tag data accessed by parallel loops with pattern:

Hint on how data will be accessed

Schedule parallel loops at runtime:

Exploit pattern hints to dispatch iterations as near as
possible to accessed data

Benefits:

Can adapt to different workloads

Minor code modification

Architecture agnostic

Challenges:

Efficient scheduler needed



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Proposed Locality Optimization
Combine Pattern Hints with Dynamic Scheduling

Key idea:

Tag data accessed by parallel loops with pattern:

Hint on how data will be accessed

Schedule parallel loops at runtime:

Exploit pattern hints to dispatch iterations as near as
possible to accessed data

Benefits:

Can adapt to different workloads

Minor code modification

Architecture agnostic

Challenges:

Efficient scheduler needed



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Proposed Locality Optimization
Combine Pattern Hints with Dynamic Scheduling

Key idea:

Tag data accessed by parallel loops with pattern:

Hint on how data will be accessed

Schedule parallel loops at runtime:

Exploit pattern hints to dispatch iterations as near as
possible to accessed data

Benefits:

Can adapt to different workloads

Minor code modification

Architecture agnostic

Challenges:

Efficient scheduler needed



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Proposed Locality Optimization
Example

By row partitioning:

Pattern Example

node0 node1

node2 node3

0 1 2 3

Iteration space

Scheduler

Pattern analysis#pragma omp for pattern(a[^1, *])

for(i = 0; i < 4; ++i)

for(j = 0; j < 4; ++j) {

a[i][j] = foo(a[i][j]);

if(j < 3)

a[i][j] += bar(a[i][j + 1]);

else if(i < 3)

a[i][j] += baz(a[i + 1][0]);

}

Matrix aMatrix a



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Implementation Details
Runtime Organization

Our dynamic approach does not rely on data distribution:

iterations are scheduled on those nodes who see data
locally

To balance workload, a multi stage scheduling algorithm has
been designed:

threads are split into groups

each group is composed of threads running on a same node

each group is assigned to a local queue of iterations



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Implementation Details
Runtime Organization

Our dynamic approach does not rely on data distribution:

iterations are scheduled on those nodes who see data
locally

To balance workload, a multi stage scheduling algorithm has
been designed:

threads are split into groups

each group is composed of threads running on a same node

each group is assigned to a local queue of iterations



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Implementation Details
Address Space Partitioning

Upon entering a parallel loop, the iteration space is partitioned
into blocks:

Iteration Grouping

Let I1, I2 two adjacent elements of the iterations space I . They
belong to the same block if:

Access the same set of pages, or

Access to pages mapped on the same node, or

Access to unmapped pages

To minimize the complexity of such algorithm we can enforce a
maximum number of blocks.



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Implementation Details
Block Distribution

The blocks are analyzed in parallel:

Each block is scored with respect to node locality

Blocks moved to local queues corresponding to the node
with the greatest affinity

Blocks with no score assigned to a global queue

Now loop execution can begin.



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Implementation Details
Iteration Dispatching

Each thread executes the same scheduling algorithm:

LF

GF

SI

local queue.is empty
∧

next == last

global queue.is empty
∧

next == last

Local Fetching

Maximize memory locality

Global Fetching

Relies on first-touch policy

Steal Iterations

To further balance workload



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Implementation Details
Iteration Dispatching

Each thread executes the same scheduling algorithm:

LF

GF

SI

local queue.is empty
∧

next == last

global queue.is empty
∧

next == last

Local Fetching

Maximize memory locality

Global Fetching

Relies on first-touch policy

Steal Iterations

To further balance workload



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Implementation Details
Iteration Dispatching

Each thread executes the same scheduling algorithm:

LF

GF

SI

local queue.is empty
∧

next == last

global queue.is empty
∧

next == last

Local Fetching

Maximize memory locality

Global Fetching

Relies on first-touch policy

Steal Iterations

To further balance workload



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Implementation Details
Iteration Dispatching

Each thread executes the same scheduling algorithm:

LF

GF

SI

local queue.is empty
∧

next == last

global queue.is empty
∧

next == last

Local Fetching

Maximize memory locality

Global Fetching

Relies on first-touch policy

Steal Iterations

To further balance workload



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Implementation Details
Iteration Dispatching

Each thread executes the same scheduling algorithm:

LF

GF

SI

local queue.is empty
∧

next == last

global queue.is empty
∧

next == last

Local Fetching

Maximize memory locality

Global Fetching

Relies on first-touch policy

Steal Iterations

To further balance workload



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Experimental Evaluation
Experimental Setup

Tests performed on a quad-node quad-core Opteron system:

Interconnect is a square

Tests performed using 16 threads

Prototype implemented for the OpenMP programming model.

The impact of work-stealing strategy has been tested against
two different configurations:

Worst uses the furthest neighbour selection policy

Best uses the nearest neighbour selection policy

Selection policy based on NUMA distances.



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Experimental Evaluation
NAS Benchmarks

Baseline is llvm-gcc 4.2 libgomp

Remote Accesses
bt

.c
cg

.c

ft
.b

is
.c

lu
.c

m
g.

b
sp

.c

ua
.c

0

20

40

60

80

100

R
em

o
te

a
cc

es
se

s
[%

]

Base Pattern

Speedups

bt
.c

cg
.c

ft
.b

is
.c

lu
.c

m
g.

b
sp

.c

ua
.c

1

1.1

1.2

1.3

1.4

1
.8

1

1
.8

2

S
p

ee
d

u
p

s
Worst Best



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Experimental Evaluation
Pattern Efficiency

Work Distribution

Blocks fetched from Speedup 2

Bench Local Global Steal Worst Best
[%] [%] [%]

bt.c 65.72 0.01 34.27 1.14 1.27
cg.c 99.61 0.03 0.36 1.81 1.82
ft.b 76.40 0.00 23.60 1.12 1.19
is.c 66.67 0.00 33.33 1.00 1.00
lu.c 80.21 0.21 19.58 1.02 1.05

mg.b 35.16 22.26 42.58 1.00 1.00
sp.c 70.03 0.00 29.97 1.18 1.23
ua.c 88.36 0.13 11.51 1.07 1.08

2W.r.t. neighbour policy



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Contents

1 Introduction

2 Locality Optimization

3 Conclusion



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

Final Remarks

Patterns:

enable automatic work distribution

small syntactic extension to the OpenMP programming
model

programmers do not need to explicitly distribute memory
or understanding the system topology

Future directions:

automatic patterns recognition/filtering

integration with page-migration 3 techniques

3E.g. next-touch



Exploiting
Thread-Data

Affinity in
OpenMP with
Data Access

Pattern

Andrea Di
Biagio, Ettore

Speziale,
Giovanni
Agosta

Introduction

Locality
Optimization

Conclusion

That’s All, Folks!

Questions are welcome


	Introduction
	Locality Optimization
	Conclusion

