Code Optimization and Transformation Course Project on:

ACSE

The Code Optimization and Transformation course exam is composed by two parts.
One is an oral test, the other is an homework, to be terminated before course last call. To
pass the whole exam, you must get a pass grade from both the test and the homework.
The homework must be taken in pairs.

During the lab classes, the LLVM [6] compiler has been introduced. The homework
must use the 3.0 release version of LLVM. A sample project — COT passes [§] — is
available on GitHub [4]. It must be used as a starting point for the homework. LLVM
testing framework [3] must be used to validate the implementation.

Sources must versioned using Git [9]. A good tutorial can be found here [2]. Sources
must be published on GitHub [4].

Assignment

The ACSE [I] compiler is a simple compiler used for lab classes of the Formal Languages
and Compiler course [5]. The language it compiles is C-based, but some features are
missed.

The goal of this project is to extend the ACSE grammar, in order to recognize a wider
language, and implement a simple syntax-driven translator targeting LLVM Intermediate
Representation.

You are required to face the following problems:

ACSE Grammar: the ACSE grammar available on Formal Languages and Compilers
course site [5] does not correctly implements the precedence rules between unary and
binary minus. You are required to fix this problem in grammar definition. The grammar
must then improved in order to support C-style function definition. The entry point of
the program is the void main(void) function.

ACSE-to-LLVM Compiler: an ACSE program is entirely contained in a single file.
You are required to parse it, and performing translation into the following forms: LLVM



human-readable byte-code, LLVM machine-oriented bit-code, target machine human-
readable assembly, and target machine binary-code. The user can select the format of
the output, as well the name of the output file using command-line options.

Please notice that the only component you can reuse of the existent ACSE compiler
is the grammar!

Advices

On LLVM website [6] there is a good tutorial explaining how you can use LLVM as the
back-end for your language [7].

You are free to chose which parsing technique to adopt. You can either implement an
hand-coded LL parser or an LALR parser based on bison.

Do not be scared from the 4 different output formats you have to support. It is not up
to you emitting the code, you have only to correctly setup the LLVM framework in order
to build the compilation pipeline leading from LLVM IR to one of the output formats.
Look at the implementations of opt and 11c in the sources tools directory.

Your compiler must be a stand-alone tool, like 11c. Please contact the teaching
assistant in order to known how you have to modify the sample project [§] in order to
edit the building system in order to support tool creation/testing.

References

[1] A. Di Biagio and G. Agosta. Advanced Compiler System for Education. URL
http://corsi.metid.polimi.it|

[2] Scott Chacon. Pro Git. URL http://git-scm.com/book.

[3] John T. Criswell, Daniel Dunbar, Reid Spencer, and Tanya Lattner. LLVM Testing
Infrastructure Guide. URL http://1lvm.org/releases/3.0/docs/TestingGuide.
htmll

I

GitHub Inc. GitHub. URL http://github.com.

S

Formal Languages and Compilers Group. Formal Languages and Compilers — Cor-
siOnline. URL http://corsi.metid.polimi.it.

[6] University of Illinois at Urbana-Champaign. Low Level Virtual Machine, . URL
http://www.1llvm.org.

[7] University of Illinois at Urbana-Champaign. LLVM Tutorial, . URL http://11lvm.
org/releases/3.0/docs/tutorial.

[8] Ettore Speziale. Compiler Optimization and Transformation Passes. URL https:
//github.com/speziale-ettore/COTPasses.

[9] Linus Torvalds. Git. URL http://git-scm.com.


http://corsi.metid.polimi.it
http://git-scm.com/book
http://llvm.org/releases/3.0/docs/TestingGuide.html
http://llvm.org/releases/3.0/docs/TestingGuide.html
http://github.com
http://corsi.metid.polimi.it
http://www.llvm.org
http://llvm.org/releases/3.0/docs/tutorial
http://llvm.org/releases/3.0/docs/tutorial
https://github.com/speziale-ettore/COTPasses
https://github.com/speziale-ettore/COTPasses
http://git-scm.com

