
Code Optimization and Transformation Course Project on:

Bounds Checking Elimination

The Code Optimization and Transformation course exam is composed by two parts.
One is an oral test, the other is an homework, to be terminated before course last call. To
pass the whole exam, you must get a pass grade from both the test and the homework.
The homework must be taken in pairs.

During the lab classes, the LLVM [5] compiler has been introduced. The homework
must use the 3.0 release version of LLVM. A sample project – COT passes [6] – is
available on GitHub [3]. It must be used as a starting point for the homework. LLVM
testing framework [2] must be used to validate the implementation.

Sources must versioned using Git [7]. A good tutorial can be found here [1]. Sources
must be published on GitHub [3].

Assignment

High level languages, like Java, often generates code protecting array accesses – i.e. the
subscript used for indexing the array is checked before accessing the memory in order to
detect whether the access in inside the bounds of the array.

Array accesses in C are not checked. You are required to implements an header-file
only library to performs checked array accesses. An example of library usage is show in
Figure 1(a).

#include ” sbounds . h”

void i n i t (int ∗ foo , int n) {
for (int i = 0 ; i != n ; ++i)

a s e t (foo , n , i , 0) ;
}

(a) User code

void i n i t (int ∗ foo , int n) {
for (int i = 0 ; i != n ; ++i) {

i f (i < 0 | | i >= n)
abort () ;

f oo [i] = 0 ;
}

}
(b) Unoptimized code

Figure 1: Examples of performing safe array accesses

1

Functions provided by the library performs bound checking before accessing the mem-
ory. If the aset function used in Figure 1(a) is expanded, you get a code like the one
reported in Figure 1(b)

The goal of this project is to detect such checks and optimized them – e.g. moving
them outside of the loop or removing them when possible. The optimization performing
such task is called Bounds Checking Elimination [4].

Advices

As stated before, C compilers does not emit bounds checking code because they usually
do not known whether a memory access refers to an array – e.g. access arrays through
pointers. The array access library you have to develop allows to generate bounds checking
code at compile-time. In order to force its functions to be always in-lined by the compiler,
mark them with the always inline attribute.

Bounds checking elimination requires observing how array subscripts are used to access
the memory. The LLVM SCEV framework can provide the information you need.

References

[1] Scott Chacon. Pro Git. URL http://git-scm.com/book.

[2] John T. Criswell, Daniel Dunbar, Reid Spencer, and Tanya Lattner. LLVM Testing
Infrastructure Guide. URL http://llvm.org/releases/3.0/docs/TestingGuide.

html.

[3] GitHub Inc. GitHub. URL http://github.com.

[4] Steven S. Muchnick. Advanced Compiler Design and Implementation, chapter Loop
Optimizations. Morgan Kaufmann.

[5] University of Illinois at Urbana-Champaign. Low Level Virtual Machine. URL
http://www.llvm.org.

[6] Ettore Speziale. Compiler Optimization and Transformation Passes. URL https:

//github.com/speziale-ettore/COTPasses.

[7] Linus Torvalds. Git. URL http://git-scm.com.

2

http://git-scm.com/book
http://llvm.org/releases/3.0/docs/TestingGuide.html
http://llvm.org/releases/3.0/docs/TestingGuide.html
http://github.com
http://www.llvm.org
https://github.com/speziale-ettore/COTPasses
https://github.com/speziale-ettore/COTPasses
http://git-scm.com

