
Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Introducing LLVM

Ettore Speziale

Politecnico di Milano

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Contents

1 Introduction

2 Compiler Organization

3 Compiler Algorithms

4 LLVM Quick Tour

5 Conclusions

6 Bibliography

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Contents

1 Introduction

2 Compiler Organization

3 Compiler Algorithms

4 LLVM Quick Tour

5 Conclusions

6 Bibliography

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Welcome
Introducing the Lab

What will we see? How to . . .

play with compilers

design compiler algorithms

implement algorithms inside a production-quality compiler

A production-quality compiler?

of course – toy compilers are almost useless!

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Welcome
Toy vs Production-Quality

Don’t be afraid from a production-quality compiler:

Toy Compiler

small code-base

easy doing tiny edits

impossible doing
normal/big edits

Production-Quality Compiler

huge code-base

difficult performing any
kind of edits

compiler-code extremely
optimized

Key concepts:

working with a production-quality compiler is initially hard,
but . . .

. . . an huge set of tools for analyzing/transforming/testing
code is provided – toy compilers miss these things!

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Low Level Virtual Machine
A Production Quality Compiler

Initially started as a research project at Urbana-Champaign:

now intensively used for researches involving compilers

key technology for leading industries – AMD, Apple, Intel,
NVIDIA, . . .

If you are there, then it is your key-technology:

open-source compilers: Open64 [6], GCC [5], LLVM [10]

LLVM is young – GCC performances are better –, but . . .

. . . it is kept clean by developers – easier working with it

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

What About the Exam?

To get a pass grade:

oral test – Professor Crespi

LLVM-based homework with short presentation – me

During the lab we will see some examples:

checkout the examples repository [11]

Examples distributed as an LLVM-based project:

please start from it

please version sources – Git tutorial here [1]

Note: LLVM is written in C++ [3, 4]:

you can follow “Principi dei Linguaggi di
Programmazione” lab classes for an intro to C++

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Contents

1 Introduction

2 Compiler Organization

3 Compiler Algorithms

4 LLVM Quick Tour

5 Conclusions

6 Bibliography

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

How Does a Compiler Works?
Recalling Formal Languages and Compilers

A compiler is just a pipeline:

Compiler Pipeline

C C front-end x86 back-end

middle-end

Fortran Fortran front-end ARM back-end

Three main components:

Front-end take and input file, translate it to an intermediate
representation

Middle-end analyze intermediate representation, optimize it

Back-end take intermediate representation, translate it into
target machine assembly

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Compiler Organization
Looking Inside *-end

Inside {Front,Middle,Back}-ends there are sub-pipelines:

simple model of computations: read something, produce
something

only needed to specify how to transform input data into
output data

Complexity lies on chaining together stages

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Terminology
Intermediate Representation and Pass

From now on, we will consider only the middle-end:

same concepts are also valid for {front,back}-end

Let me introduce:

Pass a pipeline stage is called pass

IR Intermediate Representation is the language
describing data read/written by passes. Usually,
inside middle-ends only one kind of IR is used

Given a set of passes, the pass manager:

build the compilation pipeline – schedule –, by chaining
passes together according to dependencies

Dependencies are hints:

advise pass manager about passes scheduling

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

First Insights

A compiler is complex:

passes are the elementary unit of work

pass manager must be advisee about pass chaining

pipeline shapes are not fixed – it can change from one
compiler execution to another 1

Moreover, compilers must be conservative:

apply a transformation only if program semantic is
preserved

Compiler algorithms are designed differently!

1e.g. optimized/not optimized builds

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Contents

1 Introduction

2 Compiler Organization

3 Compiler Algorithms

4 LLVM Quick Tour

5 Conclusions

6 Bibliography

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Classical Algorithms Design
Think About your Past Software Projects

Usually, you 2 act like this:

1 study the problem

2 make some examples

3 identify the common case

4 sketch a first algorithm for the common case

5 consider corner cases

6 improve algorithm performance by optimizing the common
case

Weakness of the approach:

corner cases

A correct algorithm must consider all corner cases!

2For sure me

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Compiler Algorithms Design
Think Conservative

Corner cases are difficult to handle:

compiler algorithms must be proved to preserve program
semantic

having a common methodology helps on that

Compiler algorithms are built combining three kind of passes:

analysis

optimization

normalization

Let me take loop hoisting as a simple example

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Loop Hoisting
Our Running Example

It is a transformation that:

1 look for statements not depending on loop state

2 move them outside of the loop

Loop Hoisting – Before

w h i l e (i < k) {
a += i ;
b = c ;
i ++;

}

Loop Hoisting – After

b = c ;
w h i l e (i < k) {

a += i ;
i ++;

}

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Loop Hoisting
Focus on the Transformation

The transformation is trivial:

move “good” statement outside of the loop

This is the optimization pass. It needs to known:

loops

“good” statements

They are analysis passes:

detecting loops in the program

detecting loop-independent statements

When registering loop hoisting, also declare needed analysis:

pipeline automatically built – analysis → optimization

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Loop Hoisting
Proving Program Semantic Preservation

The proof is trivial:

transformation is correct if analysis are correct, but . . .

. . . usually analysis are built starting from other analysis
already implemented inside the compiler

You have to prove that combining all analysis information gives
you a correct view of the code:

analysis information cannot induce optimization passes
applying a transformation not preserving program semantic

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Loop Hoisting
More Loops

We have spoken about loops, but which kind of loop?

do loops?

while loop?

for loops?

Loop hoisting only works with one kind of loop:

while loops

What about other kinds of loops?

they must be normalized – i.e. transformed to while loops

Normalization passes do that:

before running loop hoisting, you must tell pass manager
loop normalization must be run before

This allows to recognize more loops, thus potentially improving
optimization impact!

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Compiler Algorithm Design
Methodology

You have to:

1 analyze the problem

2 make some examples

3 detect the common case

4 declare the input format

5 declare analysis you need

6 design an optimization pass

7 proof its correctness

8 improve algorithm perfomance by acting on common case
– the only considered up to now. Please notice that corner
cases are not considered – just do not optimize

9 improve the effectiveness of the algorithm by adding
normalization passes

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Contents

1 Introduction

2 Compiler Organization

3 Compiler Algorithms

4 LLVM Quick Tour

5 Conclusions

6 Bibliography

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Intermediate Representation
Modules & Sons

LLVM tools work with modules:

lists of global objects

A global object can be:

a type declaration

a variable declaration

a function

A functions is:

a list of basic blocks

A basic block is:

a list of statements

Please notice that in LLVM a lot of things are just lists!

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Intermediate Representation
The Language

LLVM IR language [7] is RISC-based:

instructions operates on variables 3

only load and store access memory

alloca used to reserve memory on function stacks

Factorial – 1

d e f i n e i 3 2 @fac t (i 3 2 %n) nounwind {
%1 = a l l o c a i 32 , a l i g n 4
s t o r e i 3 2 %n , i 3 2 ∗ %1, a l i g n 4
%2 = l o a d i 3 2 ∗ %1, a l i g n 4
%3 = icmp eq i 3 2 %2, 0
br i 1 %3, l a b e l %4, l a b e l %5

; < l a b e l >:4
br l a b e l %11

3Virtual registers

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Intermediate Representation
The Language

Factorial – 2

; < l a b e l >:5
%6 = l o a d i 3 2 ∗ %1, a l i g n 4
%7 = l o a d i 3 2 ∗ %1, a l i g n 4
%8 = sub i 3 2 %7, 1
%9 = c a l l i 3 2 @fac t (i 3 2 %8)
%10 = mul i 3 2 %6, %9
br l a b e l %11

; < l a b e l >:11
%12 = p h i i 3 2 [1 , %4] , [%10, %5]
r e t i 3 2 %12

}

In addition, some high level instructions:

function calls – call

pointer arithmetics – getelementptr

. . .

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Intermediate Representation
Types & Variables

LLVM IR is strongly typed:

e.g. you cannot assign a floating point value to an integer
variable without an explicit cast

Almost everything is typed – e.g.:

functions @fact – i32 (i32)

statements %3 = icmp eq i32 %2, 0 – i1

Notice that a variable is:

global @var = common global i32 0, align 4

function parameter define i32 @fact(i32 %n) nounwind

local %2 = load i32∗ %1, align 4

Local variables are defined by statements

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Terminology
Speaking About LLVM IR

LLVM IR comes with 3 different flavours:

assembly human-readable format

bitcode binary on-disk machine-oriented format

in-memory binary in-memory format, used during
compilation process

All formats have the same expressiveness!

File extensions:

.ll for assembly files

.bc for bitcode files

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Tools
C Language Family Front-end

Writing LLVM assembly by hand is unfeasible:

different front-ends available for LLVM

use clang [9] for the C family

The clang driver is compatible with GCC:

same command line options

To generate LLVM IR:

assembly clang -emit-llvm -S -o out.ll in.c

bitcode clang -emit-llvm -o out.bc in.c

It can also generate native code starting from LLVM assembly
or LLVM bitcode – like compiling an assembly file with GCC

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Tools
Playing with LLVM Passes

LLVM IR can be manipulated using opt:

read an input file

run specified LLVM passes on it

respecting user-provided order

Useful passes:

print CFG with opt -view-cfg input.ll

print dominator tree with opt -view-dom input.ll

. . .

Pass chaining:

run mem2reg 4, then view the CFG with opt -mem2reg

-view-cfg input.ll

4More on this later

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

LLVM Passes
Start Looking at Code

LLVM provides a lot of passes:

try opt -help

For performance reasons there are different kind of passes:

LLVM Pass Hierarchy 5

Pass

CallGraphSCCPass ModulePass

ImmutablePass

FunctionPass LoopPass BasicBlockPass

See [8] for an intro

5Forget about RegionPass

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

LLVM Passes

Each pass kind visits particular elements of a module:

ImmutablePass compiler configuration – never run

CallGraphSCCPass post-order visit of CallGraph SCCs

ModulePass visit the whole module

FunctionPass visit functions

LoopPass post-order visit of loop nests

BasicBlockPass visit basic blocks

Specializations comes with restrictions:

e.g. a FunctionPass cannot add or delete functions

refer to [8] for accurate description of features and
limitations of each kind of pass

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Your LLVM Pass
Sources

Showing code on slides is both boring and error-prone, so I will
use as much as possible vi and the shell. All sources are
available on the course site. They are heavily commented. On
slides there are only some tips.

“Talk is cheap, show me the code” [12]

The passes we will see are very simple:

some of them are meaningless

goal is to show you the LLVM API

Each pass is “tested” using the LLVM testing framework [2]:

look at the test subdirectory

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Your LLVM Pass
Comments

Look at the following passes:

instruction-count simple instruction counting analysis

hello-llvm optimization pass building an hello-world program

function-eraser optimization pass removing “small” functions

Please take the LLVM pass writing tutorial [8]

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Contents

1 Introduction

2 Compiler Organization

3 Compiler Algorithms

4 LLVM Quick Tour

5 Conclusions

6 Bibliography

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Conclusions

LLVM is a production-quality compiler:

impossible knowing all details

But:

is well organized

if you known compilers theory is easy finding what you
need inside sources

Please take into account C++:

basic skills required

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Contents

1 Introduction

2 Compiler Organization

3 Compiler Algorithms

4 LLVM Quick Tour

5 Conclusions

6 Bibliography

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Bibliography I

Scott Chacon.
Pro Git.
https://github.com/speziale-ettore/COTPasses.

John T. Criswell, Daniel Dunbar, Reid Spencer, and Tanya
Lattner.
LLVM Testing Infrastructure Guide.
http://llvm.org/releases/3.0/docs/TestingGuide.html.

Bruce Eckel.
Thinking in C++ – Volume One: Introduction to Standard
C++.
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html.

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Bibliography II

Bruce Eckel and Chuck Allison.
Thinking in C++ – Volume Two: Practical Programming.
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html.

GNU.
GNU Compiler Collection.
http://gcc.gnu.org.

Open64 Steering Group.
Open64.
http://www.open64.net.

Chris Lattner and Vikram Adve.
LLVM Language Reference Manual.
http://llvm.org/releases/3.0/docs/LangRef.html.

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Bibliography III

Chris Lattner and Jim Laskey.
Writing an LLVM Pass.
http://llvm.org/releases/3.0/docs/WritingAnLLVMPass.html.

University of Illinois at Urbana-Champaign.
clang: a C language family frontend for LLVM.
http://clang.llvm.org.

University of Illinois at Urbana-Champaign.
Low Level Virtual Machine.
http://www.llvm.org.

Ettore Speziale.
Compiler Optimization and Transformation Passes.
https://github.com/speziale-ettore/COTPasses.

Introducing
LLVM

Ettore
Speziale

Introduction

Compiler
Organization

Compiler
Algorithms

LLVM Quick
Tour

Conclusions

Bibliography

Bibliography IV

Linus Torvalds.
Re: SCO: ”thread creation is about a thousand times
faster than onnative.
https://lkml.org/lkml/2000/8/25/132.

	Introduction
	Compiler Organization
	Compiler Algorithms
	LLVM Quick Tour
	Conclusions
	Bibliography

