LLVM Passes

LLVM Passes

Ettore Speziale

Politecnico di Milano

S5
; "’ﬂ@ Contents
2\

LLVM Passes

Introduction

Normalization Passes

Analysis Passes

Conclusions

Bibliography

Contents

Introduction

Introduction

What is Available Inside LLVM?

LLVM Passes

LLVM provides passes performing basic transformations:
Introduction

m variables promotion
m loops canonicalization

[T
They can be used to normalize/canonicalize the input:

m transform into a form analyzable for further passes
Input normalization is essential:

m keep passes implementation manageable

Which Tongue does LLVM Speak?

Static Single Assignment

LLVM IR is SSA-based:
Introduction

m every variable is statically assigned exactly once
Statically means that:

m inside each function
m for each variable %foo

m there is only one statement in the form %foo = ...
Static is different from dynamic:

m a static assignment can be executed more than once

Static Single Assignment

Examples

LLVM Passes

Spe!

Scalar SAXPY

e et float saxpy(float a, float x, float y) {
return a x x + vy;

‘ \-v-/

Scalar LLVM SAXPY

define float @saxpy(float %a, float %x, float %y) {
%1 = fmul float %a, %x
%2 = fadd float %1, %y
ret float %2

}

Temporary %1 not reused for %2

Static Single Assignment

Examples

LLVM Passes

Array SAXPY
Ettore

void saxpy(float a, float x[4], float y[4], float z[4]) {
Introduction for (unsigned i = 0; i < 4; ++i)
z[i] =a x x[i] + y[il];

Array LLVM SAXPY

;o <label >:1
%i.0 = phi i32 [0, %0], [%12, %11]
%2 = icmp ult i32 %i.0, 4
br il %2, label %3, label %13
o <label >:3

%12 = add i32 %i.0, 1
br label %1

One assignment for loop counter %i.0

Static Single Assignment

Handling Multiple Assignments

LLVM Passes
Max

Ettore
SRSz float max(float a, float b) {
return a > b ? a : b;

Introduction

LLVM Max — Bad

%1 = fcmp ogt float %a, %b
br il %1, label %2, label %3

; <label >:2
%5 = %a
br label %4
; <label >:3
%5 = %b
br label %4
; <label >:4

ret float %5

Why is it bad?

Static Single Assignment

Use phi to Avoid Troubles

el The %5 variable must be statically set once

LLVM Max

Etocuciion %l = fcmp ogt float %a, %b

br il %1, label %2, label %3

; <label >:2
br label %4

; <label >:3
br label %4

; <label >:4
%5 = phi float [%a, %2], [%b, %3]

ret float %5

The phi instructions is a conditional move:

m it takes (variable;, label;) pairs
m if coming from predecessor identified by /abel;, return

variable;

Static Single Assignment

Definition and Uses

Each SSA variable is set only once:

Introduction

m variable definition
Each SSA variable can be used by multiple instructions:

m variable uses
Algorithms and technical language abuse of these terms:
Let %foo be a variable. If %foo definition has not side-effects,

and no uses, dead-code elimination can be efficiently performed
by erasing %foo definition from the CFG.

Static Single Assignment

Rationale

Old compilers are not SSA-based:
Introduction

m putting input into SSA-form is expensive

m cost must be amortized
New compilers are SSA-based:

m SSA easier to work with

m SSA-based analysis/optimizations faster
All modern compilers are SSA-based:

m exception is HotSpot Client compiler

Contents

LLVM Passes

Normalization
Passes

Normalization Passes

Canonicalize Pass Input

We will see the following passes:

Useful Passes

Normalization

Passes Pass Switch
Variable promotion mem2reg
Loop simplify loop-simplify
Loop-closed SSA lcssa
Induction variable simplification indvars

They are normalization passes:

m put data into a canonical form

Variable Promotion

s One of the most difficult things in compiler is:

Ettore

Speziale m considering memory accesses

Normalization Plain SAXPY

Passes

define float @saxpy(float %a, float %x, float %y) {
%1 = alloca float, align 4
%2 = alloca float, align 4
%3 = alloca float, align 4
store float %a, floatx %1, align 4
store float %x, float*x %2, align 4
store float %y, floatx %3, align 4
%4 = load float* %1, align 4
%5 = load float*x %2, align 4
%6 = fmul float %4, %5
%7 = load floatx %3, align 4
%8 = fadd float %6, %7
ret float %8

}

Variable Promotion
Simplifying Representation

LLVM Passes

In the SAXPY kernel some alloca are generated:

m represent local variables !

Normalization
Passes

They are generated due to compiler conservative approach:

m maybe some instruction can take the addresses of such
variables, hence a memory location is needed

Complex representations makes hard performing further actions:

B suppose you want to compute a * x +y using only one
instruction 2

m hard to detect due to load and store

! Arguments are local variables
’FMA4

Variable Promotion
Using Memory Only When Necessary

LLVM Passes

To limit the number of instruction accessing memory:

m we need to eliminate load and store

m achieved by promoting variables from memory to registers

Inside LLVM SSA-based representation:

Normalization
Passes

memory Stack allocations — e.g %1 = alloca float, align 4
register SSA variables — e.g. %a

The mem2reg pass focus on:
m eliminating alloca with only load and store uses
Also available as utility:

B llvm :: PromoteMemToReg

Variable Promotion

Example

LLVM Passes

Ettore
Speziale

%1l = %a %l = alloca float
Normalization %2 = %x %2 = alloca float
Pl %3 = %y %3 = alloca float
%4 = %1 store %a, %l
%5 = %2 store %x, %2
%6 = fmul %4, %5 store %y, %3
%7 = %3 %4 = load %1
%8 = fadd %6, %7 %5 = load %2
ret %8 %6 = fmul %4, %5
%7 = load %3
%8 = fadd %6, %7
0,
After Copy-propagation ek s
s = (o] %, oo Copy propagation performed
%2 = fadd %1, %y
ret %2 transparently by the

compiler

LLVM Passes

Ettore Different kind of loops:

Speziale

do-while Loops while Loops Irreducible Loops
Normalization

| |
080 FON
TR

—C2O—

Focus is on one kind of loops:

m natural loops

Natural Loops

LLVM Passes

A natural loop:

Normalization

Passes m has only one entry node — header

m there is a back edge that enter the loop header
Under this definition:

m the irreducible loop is not a natural loop

m since LLVM consider only natural loops, the irreducible
loop is not recognize as a loop

BUEEEEN Loops defined starting from back-edges:
E

back-edge edge entering loop header: (3,1)

header loop entry node: 1

body nodes that can reach
l e back-edge source
@V@ @ node — 3 — without
(N) passing from
_’@ @ back-edge target
| | node — 1 — plus
back-edge target
node: {1,2,3}

exiting nodes with a successor outside the loop: {1,3}

Normalization
Passes

exit nodes with a predecessor inside the loop: {4,5}

Loop Simplify

Natural loops allows to identify loops:
m some features are not analysis/optimization friendly

The loop-simplify pass normalize natural loops:

pre-header the only Pre-header Insertion

predecessor of

Normalization
Passes

header node l
latch the starting node @
of the only l

back-edge 0 w@ @
exit-block ensures exits
dominated by @ C?

loop header l

Loop Simplify

Example

LLVM Passes

Ettore
Speziale

| |

Q2 Qo
cpoae P
-0 © e d

Normalization
Passes

m pre-header always executed before entering the loop
m latch always executed before starting a new iteration
m exit-blocks always executed after exiting the loop

Loop-closed SSA

Loop representation can be further normalized:

m loop-simplify normalize the shape of the loop

Normalization

e m nothing is said about loop definitions
Keeping SSA form is expensive with loops:
m lcssa insert phi instruction at loop boundaries for
variables defined inside the loop body and used outside

m this guarantee isolation between optimization performed
inside and outside the loop

m faster keeping IR into SSA form — propagation of code
changes outside the loop blocked by phi instructions

Loop-closed SSA

Example

o unsigned search(float *x, unsigned n, float y) {
Normalization

Passes unsigned i, j = 0;
for(i = 0; i != n; ++i)
if(x[i] =y
i=1i;
return j

The example is trivial:

m think about having large loop bodies

m transformation becomes useful

Loop-closed SSA

Example

LLVM Passes

Ettore BefOI’e LCSSA

Speziale

%i.0 = phi i32 [0, %0], [%10, %9]
%j .0 = phi i32 [0, %0], [%j.1, %9]
Normalization %2 = icmp ne 32 %i.0, %n

Passes br il %2, label %3, label %11

; <label >:3

br il %6, label %7, label %8
; <label >:7
br label %8
; <label >:8
%j.1 = phi i32 [%i.0, %7], [%j.0, %3]
br label %9
; <label >:9
%10 = add i32 %i .0, 1
br label %1
; <label >:11
ret i32 %j.0

Loop-closed SSA

Example

LLVM Passes
Ettore After LCSSA

Speziale

%i .0 = phi i32 [0, %0 |, [%10, %9]
%j.0 = phi i32 [0, %0], [%j.1, %9]
o %2 = icmp ne 32 %i.0, %n

Normalization br il %2, label %3, label %11

Passes

; <label >:3

br i1l %6, label %7, label %8
; <label >:7
br label %8
; <label >:8
%j.1 = phi i32 [%i.0, %7], [%j.0, %3]
br label %9
; <label >:9
%10 = add i32 %i .0, 1
br label %1
; <label >:11
%j .0.lcssa = phi i32 [%j.0, %1l]
ret i32 %j.0.lcssa

Induction Variables

RAUNEEEN Some loop variables are special:

Et
‘ E e.g. counters

Generalization lead to induction variables:

Normalization

Passes B foo is a loop induction variable if its successive values form
an arithmetic progression:

foo = bar * baz + biz

where bar, biz are loop-invariant 3. and baz is an induction
variable

B foo is a canonical induction variable if it is always
incremented by a constant amount:

foo = foo + biz

where biz is loop-invariant

3Constants inside the loop

Induction Variable Simplification

LLVM Passes

Canonical induction variables are used to drive loop execution:
Normalization
Passes

m given a loop, the indvars pass tries to find its canonical
induction variable

With respect to theory, LLVM canonical induction variable is:

m initialized to o

m incremented by 1 at each loop iteration

Normalization
Wrap-up

LLVM Passes

Normalization passes running order:

mem2reg: limit use of memory, increasing the effectiveness
Normalization of SUbSGq uent passes

Passes

loop-simplify: canonicalize loop shape, lower burden of
writing passes

lcssa: keep effects of subsequent loop optimizations
local, limiting overhead of maintaining SSA form

indvars: normalize induction variables, highlighting the
canonical induction variable

Other normalization passes available:

m try running opt -help

ST\

‘@ Contents
/!

LLVM Passes

Analysis
Passes

Analysis Passes

Checking Input Properties

Analysis basically allows:
® inspecting input
Keeping analysis information is expensive:

Analysis m tuned algorithms updates analysis information when an
Fasses optimization invalidates them

m incrementally updating analysis is cheaper than
recomputing them

Many LLVM analysis supports incremental updates:
m this is an optimization

m forget this feature for the home-work

m focus on information provided by analysis

Useful Analysis

ULl We will see the following passes:

Ettore
Speziale

Pass Switch Transitive
Control flow graph none No
Analysi Dominator tree domtree No
Post-dominator tree postdomtree No
Loop information loops Yes
Scalar evolution scalar-evolution Yes
Alias analysis special Yes
Memory dependence memdep Yes

Requiring analysis by transitivity:
yes llvm :: AnalysisUsage :: addRequired Transitive <T>()
NO Ilvm :: AnalysisUsage :: addRequired<T>()

Control Flow Graph

The Control Flow Graph is implicitly maintained by LLVM:
m no specific pass to build it
Recap:

Al m CFG for a function is a set of basic blocks

Passes

m a basic block is a set of instructions
Functions and basic blocks acts like containers:

m STL-like accessors: front(), back(), size(), ...
m STL-like iterators: begin(), end()

Each contained element is aware of its container:

B getParent()

Control Flow Graph
Walking

LLVM Passes

Every CFG has an entry basic block:

m the first executed basic block
m it is the root/source of the graph

Analysi: . .
Passes m get it with llvm :: Function :: getEntryBlock()

More than one exit blocks can be generated:
m their terminator instructions are rets
m they are the leaves/sinks of the graph
B use llvm :: BasicBlock:: get Terminator() to get the terminator . ..

m ...then check its class

Side Note

Casting Framework

For performance reasons, a custom casting framework is used:

B you cannot use static.cast and dynamic_cast with
types/classes provided by LLVM

o LLVM Casting Functions
nalysis —_—

Passes

Meaning Function
Static cast of Y « to X « X # llvm iz cast <X>(Y)
Dynamic cast of Y « to X x X # llvm :: dyn_cast<X>(Y)
Is Yy an x7 bool Ilvm :: isa <X>(Y x)

Example:

®m is BB a sink?

llvm :: isa <llvm:: Returninst >(BB.get Terminator())

Control Flow Graph

Basic Blocks

LLVM Passes .
Every basic block BB has one or more:

predecessors from pred_begin(BB) tO pred_end(BB)

successors from succ_begin(BB) tO succ_end(BB)

Convenience accessors directly available in livm :: BasicBlock:

Analysis
Passes

m e.g. llvm : BasicBlock:: getUniquePredecessor()
Other convenience member functions:

® moving a basic block:
llvm :: BasicBlock :: moveBefore(llvm::BasicBlock *) Or

llvm :: BasicBlock :: moveAfter(llvm :: BasicBlock)

m split a basic block:

llvm :: BasicBlock :: splitBasicBlock (llvm :: BasicBlock:: iterator)

Control Flow Graph

Instructions

The livm :: Instruction class define common operations:
m e.g. getting an operand: Iivm :: Instruction :: getOperand(unsigned)
Subclasses provide specialized accessors:

i m e.g the load instruction takes an operand that is a pointer:
nalysis
Passes llvm :: LoadlInst :: getPointerOperand()

The value produced by the instruction is the instruction itself:

Example

Consider:
%6 = load i32% %1, align 4

the load is described by an instance of livm :: Loadlnst. That
instance also models the %6 variable

Instructions

Creating New Instructions

LLVM Passes
Instructions built using:
W constructors — e.g. llvm:: Loadlnst :: LoadInst (...)
m factory methods — e.g. livm :: GetElementPtrlnst :: Create (...)
Analysis Interface is not homogeneous:

Passes

m some instructions support both methods

m others support only one
At build-time, instructions can be:

m appended to a basic block

m inserted after/before a given instruction

Insertion point usually specified as builder last argument

Side Note

Definitions and Uses

LLVM Passes

LLVM class hierarchy is built around two simple concepts:

value something that can be used: Iivm :: Value
user something that can use: Ilvm :: User
Al A value is a definition:
Passes
B llvm :: Value:: use_begin (), llvm :: Value::use_end() tO visit uses
An user access definitions:
B llvm :: User :: op_begin(), Ilvm :: User::op_end() to visit used values

Functions: Instructions:

m used by call sites m define an SSA value

m uses formal parameters B uses operands

Side Note

Value Typing

Every Iivm :: Value is typed:

B use llvm :: Value:: getType() to get the type
Since every instructions is/define a value:

Analysi i i
nalysis ® instructions are typed

Passes
Example

Consider:
%6 = load i32x %1, align 4

the %6 variable actually is the instruction itself. Its type is the
type of load return value, i32

Dominance Trees

Dominance trees answer to control-related queries:

m is this basic block m is this basic block
executed before that? executed after that?
B llvm :: DominatorTree B llvm :: PostDominatorTree
Analysis
Hosss The two trees interface is similar:

B bool dominates(X x, X x)

B bool properlyDominates(X x, X x)

Where X is an livm :: BasicBlock OF an livm :: Instruction
Using opt is possible printing them:

m -view-dom, —dot-dom

m -view-postdom, ~dot-postdom

Loop Information

LLVM Passes

Loop information are represented using two classes:

B llvm :: Looplnfo analysis detects natural loops

Analysis B llvm :: Loop represents a single loop

Passes

Using Ilvm :: Looplinfo it is possible:
® navigate through top-level loops:
llvm :: Looplnfo:: begin(), Illvm :: Looplnfo::end()

m get the loop for a given basic block:

llvm :: Looplnfo:: operator [](llvm :: BasicBlock)

Loop Information

Nesting Tree

Loops are represented in a nesting tree:

while (i < 10) { @

. while (j < 10)
Analysi while (k < 10)

while (h < 10) @ @

-]
O

m children loops: livm :: Loop::begin(), llvm :: Loop::end()

Nest navigation:

m parent |00p: llvm :: Loop::getParentLoop()

Loop Information

Query Loops

LLVM Passes i
Accessors for relevant nodes also available:

pre-header Iivm :: Loop:getLoopPreheader()
header Ilvm :: Loop::getHeader()
latch Ilvm :: Loop::getLoopLatch()
/QZ;'ZSS exiting llvm :: Loop::getLoopExiting/(),
llvm :: Loop:: getExitingBlocks (...)
exit Ilvm :: Loop::getExitBlock ()
llvm :: Loop:: getExitBlocks (...)
Loop basic blocks accessible via:
iterators llvm :: Loop::block_begin (),
llvm :: Loop::block_end ()

vector std : vector <llvm::BasicBlock > &llvm::Loop::getBlocks()

Loop Information

Query Loop Instructions

Other Ilvm :: Loop accessors:

m canonical induction variable:

llvm :: Loop:: getCanonicallnductionVariable ()
Analysis
Passes

m trip count:
llvm :: Loop::getTripCount()
The trip count is a llvm :: Value:
m indicates the number of iterations composing the loop

m not always possible computing it

Scalar Evolution

The SCalar EVolution framework:

m represents scalar expressions
m supports recursive updates

m lower burden of explicitly handling expressions composition

Analysis .) . . .
Passes m is designed to support general induction variables
- <label >:1 m initial value 0
%i.0 = phi [0, %0], [%11, %2] .
%exitcond — icmp ne %i.0. 10 m incremented
br %exitcond , label %2, label %3 - by 1 at each
; <label >:2 Herati
%11 = add nsw %i .0, 1 Iteration
br label %1

m final value 10

Scalar Evolution

Example

LLVM Passes

SCEV {AB.C}<%D>:

void foo () {
int bar[10][20];

A initial

[
m B operator
[
[

Analvei for(int i = 0; i < 10; ++i)
Passes for(int j = 0; J < 20; ++j) C operand
bar[i][j] =

D defining BB

Induction Variables

%i .0 = phi i32 [0, %0], [%11, %10 |

—> {0,+,1} <nuw><nsw><%I1> Exits: 10
%j .0 = phi i32 [0, %2], [%8, %7]

—> {0,+,1} <nuw><nsw><%3> Exits: 20

Analysis
Passes

Scalar Evolution

More than Induction Variables

The scalar evolution framework manages any scalar expression:

Pointer SCEVs

%5 = getelementptr %bar, i32 0, i32 %i.0

—> {%bar,+,80} <nsw><%1>
Exits: {%bar,+,80} <nsw><%1l>
%6 = getelementptr %5, i32 0, i32 %j.0
—> {{%bar,+,80} <nsw><%1>,+,4}<nsw><%3>
Exits: {(80 + %bar),+,80} <nw><%I1>

SCEV is an analysis used for common optimizations:

m induction variable substitution
m strength reduction

Scalar Evolution
SCEVs Design

LLVM Passes

SCEVs are modeled by the Ivm ::SCEV class:

m a subclass for each kind of SCEV: e.g. Ilvm :: SCEVAddExpr

m instantiation disabled

A SCEV actually is a tree of SCEVs:

Analysis
Passes

B {(80 + %bar),+,80} = {%1,4.80}, %1 = 80 + %bar
Tree leaves:

constant Ilvm:: SCEVConstant: €.g. 80

unknown 4

llvm :: SCEVUnknown: €.g. %bar
SCEV tree explorable through the visitor pattern:

B llvm :: SCEVVisitor

*Not further splittable

Scalar Evolution

Analysis Interface

LLVM Passes

llvm :: ScalarEvolution class:

m analyzes SCEVs for a livm :: Function
m builds SCEVs for values:

llvm :: ScalarEvolution :: getSCEV(llvm::Value x)
Analysis

Passes

m creates new SCEVs:
llvm :: ScalarEvolution :: getConstant(llvm :: Constantint x)

llvm :: ScalarEvolution :: getAddExpr(llvm::SCEV =, llvm::SCEV x)

m gets important SCEVs:
llvm :: ScalarEvolution :: getBackedgeTakenCount(llvm::Loop *)

llvm :: ScalarEvolution :: getPointerBase(llvm :: SCEV x)

AEIAGEINSS

LLVM Passes) .))
Let X be an instruction accessing a memory location:

m is there another instruction accessing the same location?
Alias analysis tries to answer the question:

application memory operation scheduling
Analysis

RS problem often fails
Different algorithms for alias analysis:

m common interface — livm :: AliasAnalysis — for all algorithms

m by default, basic alias analyzer — basicaa — is used

Requiring Alias Analysis

AU. addRequiredTransitive<llvm :: AliasAnalysis >();

Analysis
Passes

IEIAGEINES

Memory Representation

Distinct Locations

%1l = load i16* %a %a —
%2 = load 16 %b %b —
store i16 %2, i32% %a
store 116 %1, i32* %b

Overlapping Locations

e~ s~
%b - % "

Basic building block is llvm:: AliasAnalysis :: Location:

m address: e.g. %a
m size: e.g. 2 bytes

Alias Analyzer

Basic Interface

Given two locations X, Y, the alias analyzer classifies them:

B llvm :: AliasAnalyzer :: NoAlias: X and Y are different memory
locations

B llvm :: AliasAnalyzer :: MustAlias: X and Y are equal —ie. they

Analvei points to the same address
nalysis

Passes

B llvm :: AliasAnalyzer :: PartialAlias : X and Y partially overlap —
i.e. they points to different addresses, but the pointed
memory areas partially overlap

B llvm :: AliasAnalyzer :: MayAlias: unable to compute aliasing
information —i.e. X and Y can be different locations, or
X can be a complete/partial alias of Y

Queries performed using:

B llvm :: AliasAnalyzer :: alias (X, Y)

Alias Analyzer

Mid-level Interface

LLVM Passes

o Basic alias analyzer interface is low-level — we would like

expressing queries about a single pointer X:

m how referenced memory location is accessed?

Analysis m which other instructions reference the same location?

Passes

What we need is a set, to classify memory locations:

B construct a llvm:: AliasSetTracker starting from a

llvm :: AliasAnalyer

m it builds Ilvm :: AliasSets
For a given location X, a llvm :: AliasSet:

m contains all locations aliasing with X

Alias Analyzer

Alias Set Memory Accesses

LLVM Passes

Each alias set references the memory:

B Ilvm :: AliasSet :: NoModRef: N0 memory reference — i.e. the set
is empty

Analysis . .

Passes B llvm :: AliasSet :: Mod: memory accessed in write-mode — e.g.
a store is inside the set

B Ilvm :: AliasSet :: Ref: memory accessed in read-mode — e.g. a
load is inside the set

B llvm :: AliasSet :: ModRef: memory accessed in read-write mode
—e.g. aload and a store inside the set

Alias Analyzer

Mid-level Interface

Entry point is livm :: AliasSetTracker :: getAliasSetForPointer (...) :

llvm :: Value x: location address
uint64_t: location size

Analvei llvm :: MDNode +: used for type-based alias analysis °
nalysis

Passes

n
n
n
B bool +: whether a new Ilvm :: AliasSet has been created to
hold the location — location does not alias up to now
Having the Ilvm :: AliasSet:

m STL container-like interface: size (), begin(), end(), ...
m check reference type: Ilvm:: AliasSet :: isRef (), . ..

m check aliasing type: Ilvm :: AliasSet :: isMustAlias (), . ..

Sset to NULL

Memory Dependence Analysis
Alias Analyzer High-level Interface

LLVM Passes

The 1vm :: MemoryDependenceAnalysis Wraps alias analysis to answer
queries in the following form:

o m let %foo be an instruction accessing memory. Which
nalysis

Passes preceding instructions does %foo depends on?
Reads: Writes:
B storeS Writing memory B loads reading memory
locations aliases with locations aliased with
the one references by the one referenced by

%foo %foo

Memory Dependence Analysis

APls

Let %foo be a livm :: Instruction accessing memory:

m call ivm: MemoryDependenceAnalysis::getDependency(...)
m you get a Illvm :: MemDepResult

Dependencies are classified:

é"a'YSiS B llvm :: MemDepResult::isClobber(): an instruction clobbering — i.e.
asses
potentially modifying — location referenced by %foo has
been found

B Ilvm :: MemDepResult::isDef(): an instruction defining — e.g.
writing — the exact location referenced by %foo has been
found

B Ilvm :: MemDepResult::isNonLocal(): no dependency found on %foo
basic block

B Ilvm :: MemDepResult::isNonFuncLocal(): no dependency found on
%foo function

Contents

LLVM Passes

Conclusions

Conclusions

Conclusions

LLVM Passes

Inside LLVM there a lot of passes:

normalization put program into a canonical form

analysis get info about program

Conclusions

Please remember that

m a good compiler writer re-uses code

m check LLVM sources before re-implementing a pass

7, ST\

(e Contents
i)

Bibliography

Bibliography

Bibliography |

LLVM Passes

e Chris Lattner and Vikram Adve.
LLVM Language Reference Manual.
http://llvm.org/releases/3.0/docs/LangRef.html.

[§ Chris Lattner and Jim Laskey.
Writing an LLVM Pass.
http://llvm.org/releases/3.0/docs/WritingAnLLVMPass.html.

Bibliography)))))

[§ University of lllinois at Urbana-Champaign.
Low Level Virtual Machine.
http://www.llvm.org.

[@ Ettore Speziale.
Compiler Optimization and Transformation Passes.
https://github.com/speziale-ettore/COTPasses.

	Introduction
	Normalization Passes
	Analysis Passes
	Conclusions
	Bibliography

