
Code Optimization and Transformation Course Project on:

Modulo Scheduling

The Code Optimization and Transformation course exam is composed by two parts.
One is an oral test, the other is an homework, to be terminated before course last call. To
pass the whole exam, you must get a pass grade from both the test and the homework.
The homework must be taken in pairs.

During the lab classes, the LLVM [7] compiler has been introduced. The homework
must use the 3.0 release version of LLVM. A sample project – COT passes [8] – is
available on GitHub [4]. It must be used as a starting point for the homework. LLVM
testing framework [3] must be used to validate the implementation.

Sources must versioned using Git [9]. A good tutorial can be found here [2]. Sources
must be published on GitHub [4].

Assignment

The goal of the project is to implement a simplified version of the Modulo Scheduling
algorithm, described in [1].

Your algorithm must work on the LLVM Intermediate Representation. Since the
original algorithm works on a representation that is very close to machine code, the
following restrictions must be considered:

Machine Info: the modulo scheduling algorithm requires knowing the latencies of each
instruction and the number of functional units of the target machine. LLVM IR is not
so close to the target machine, so these information are missing. You are free to define
such parameters, using a MIPS [5] architecture as starting point – e.g MIPS R10000 [6].

Register Allocation: after scheduling instructions, modulo scheduling performs register
allocation. If during register allocation some spills are generated, the scheduling com-
puted by modulo scheduling is not optimal and therefore it is discarded. Since LLVM IR
is SSA-based, register allocation is meaningless, so you must not implement this phase.

1



Advices

Machine information can be defined in a configuration file. The LLVM framework pro-
vides the llvm::MemoryBuffer class to read a whole file in memory. It can be used to load
the configuration file and parse it like a string.

You can implement an analysis pass to compute these information – e.g. loading them
from the configuration file. Once loaded, they never changes. Such kind of analysis are
special. They are called Immutable. The llvm:: ImmutablePass must be used as the superclass
for that kind of passes.

The modulo scheduling is obviously an optimization pass. It can be implemented
using a llvm::LoopPass.

References

[1] Andrew W. Appel. Modern Compiler Implementation in Java, chapter Pipelining
and Scheduling. Cambridge University Press.

[2] Scott Chacon. Pro Git. URL http://git-scm.com/book.

[3] John T. Criswell, Daniel Dunbar, Reid Spencer, and Tanya Lattner. LLVM Testing
Infrastructure Guide. URL http://llvm.org/releases/3.0/docs/TestingGuide.

html.

[4] GitHub Inc. GitHub. URL http://github.com.

[5] MIPS Inc. MIPS Technologies, . URL http://www.mips.com.

[6] MIPS Inc. MIPS R10000 Microprocessor User’s Manual, . URL http://techpubs.

sgi.com/library/manuals/2000/007-2490-001/pdf/007-2490-001.pdf.

[7] University of Illinois at Urbana-Champaign. Low Level Virtual Machine. URL
http://www.llvm.org.

[8] Ettore Speziale. Compiler Optimization and Transformation Passes. URL https:

//github.com/speziale-ettore/COTPasses.

[9] Linus Torvalds. Git. URL http://git-scm.com.

2

http://git-scm.com/book
http://llvm.org/releases/3.0/docs/TestingGuide.html
http://llvm.org/releases/3.0/docs/TestingGuide.html
http://github.com
http://www.mips.com
http://techpubs.sgi.com/library/manuals/2000/007-2490-001/pdf/ 007-2490-001.pdf
http://techpubs.sgi.com/library/manuals/2000/007-2490-001/pdf/ 007-2490-001.pdf
http://www.llvm.org
https://github.com/speziale-ettore/COTPasses
https://github.com/speziale-ettore/COTPasses
http://git-scm.com

