
Code Optimization and Transformation Course Project on:

Program Dependence Graph

The Code Optimization and Transformation course exam is composed by two parts.
One is an oral test, the other is an homework, to be terminated before course last call. To
pass the whole exam, you must get a pass grade from both the test and the homework.
The homework must be taken in pairs.

During the lab classes, the LLVM [6] compiler has been introduced. The homework
must use the 3.0 release version of LLVM. A sample project – COT passes [7] – is
available on GitHub [5]. It must be used as a starting point for the homework. LLVM
testing framework [4] must be used to validate the implementation.

Sources must versioned using Git [8]. A good tutorial can be found here [3]. Sources
must be published on GitHub [5].

Assignment

You are required to build analysis passes computing the following graphs over functions
expressed using LLVM Intermediate Representation:

Data-dependence Graph: encodes data-dependencies between nodes in the Control-
flow Graph. The definition given in [1] labels edges according to hardware constraints.
Since the DDG must be build over LLVM IR, do not consider hardware details – e.g.
instruction latencies – and thus do not label graph edges.

Control-dependence Graph: encodes control-dependencies between nodes in the Control-
flow Graph. Refer to [2] for the algorithm computing the CDG.

Program-dependence Graph: encodes both data-dependencies and control-dependencies
between nodes in the Control-flow Graph. Edges are categorized based on the kind of
dependency they represent. It can be built starting from the PDG and the CDG.

Each graph must expose accessors used to determine whether a given couple of nodes
are dependent – e.g. DataDependenceGraph::depends(const llvm::Value ∗, const llvm::Value ∗).

1



The output of each analysis can also be inspected using the console – i.e. calling opt

with the -analyze switch, and graphically – e.g. like the view-cfg pass.

Advices

Inside LLVM there is a standard procedure for building this kind of passes:

1. define a class for your graph – e.g. implement the DataDependendeGraphBase class

2. define the class implementing the analysis by sub-classing both llvm::FunctionPass

and your graph class – e.g. DataDependenceGraph. Implement graph construction in
the analysis runOnFunction member function. Implement text-based visualization of
analysis results in the print member function

3. provide graphical rendering of analysis by implementing a pass sub-classing and
specializing llvm::DOTGraphTraitsViewer

4. provide DOT-based output of analysis by implementing a pass sub-classing and
specializing llvm::DOTGraphTraitsPrinter

In order to exploit LLVM infrastructure for viewing/printing the graph, you have
to specialize LLVM graph traits – llvm::GraphTraits – and LLVM DOT graph traits –
llvm::DOTGraphTraits – for your graph.

References

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers –
Principles, Techniques, and Tools, chapter Instruction Level Parallelism. Pearson.

[2] Andrew W. Appel. Modern Compiler Implementation in Java, chapter Static Single-
Assignment Form. Cambridge University Press.

[3] Scott Chacon. Pro Git. URL http://git-scm.com/book.

[4] John T. Criswell, Daniel Dunbar, Reid Spencer, and Tanya Lattner. LLVM Testing
Infrastructure Guide. URL http://llvm.org/releases/3.0/docs/TestingGuide.

html.

[5] GitHub Inc. GitHub. URL http://github.com.

[6] University of Illinois at Urbana-Champaign. Low Level Virtual Machine. URL
http://www.llvm.org.

[7] Ettore Speziale. Compiler Optimization and Transformation Passes. URL https:

//github.com/speziale-ettore/COTPasses.

[8] Linus Torvalds. Git. URL http://git-scm.com.

2

http://git-scm.com/book
http://llvm.org/releases/3.0/docs/TestingGuide.html
http://llvm.org/releases/3.0/docs/TestingGuide.html
http://github.com
http://www.llvm.org
https://github.com/speziale-ettore/COTPasses
https://github.com/speziale-ettore/COTPasses
http://git-scm.com

