Introducing
ACSE

Introducing ACSE

Alessandro Barenghi Ettore Speziale Michele Tartara

Politecnico di Milano

Contents

Introducing
ACSE

Introduction

Languages
m LANCE
m Intermediate Assembly

Parsing LANCE

Bibliography

Contents

Introducing
ACSE

Introduction

Introduction

Advanced Compiler System for Education

It is our simple compiler front-end:

m accepts a C-like language

m generates a RISC-like intermediate code

Usually, the lab test requires:

Introduction

m to add tokens to the accepted language
m to accept new statements

m to translate new statements into intermediate code

Getting ACSE

m available on course site [2]

m full manual available [1]

Quick Start |

Introducing
ACSE . .
Build a simple hello world:

Compile and run

Tartara

e oduetion write(72); // H $ acse hello.src
write (101); // e $ asm output.asm
write (108); // 1 $ mace output.o
write (108); // 1 72
write (111); // o 101
write (33); // ! 108

108
111

33

Quick Start Il

Three tools:

m compiler to assembly (acse)

m assembler to machine code (asm)

Introduction

m interpreter (mace)
In this course we modify the first:
m last two allow to try your programs
A dump of intermediate representation are .cfg files 1:

m easy to see your edits here

'Produced by acse.

Sources

The ACSE sources are contained into the acse directory:

m well commented

m easy to understand

Introduction

All data structures accessible through the program global:

m a huge number of helper functions allows to perform
common operations (e.g. getting a new temporary
register) without using the low level interface

m related helpers grouped in the same module

m module headers heavily documented

Contents

Introducing
ACSE

Languages
m LANCE
m Intermediate Assembly

Languages

Which tongue does ACSE speak?

Introducing
ACSE

ndro

ACSE:
reads LANCE

produces an intermediate assembly
emits MACE assembly

Languages
Languages are very simple:
m should be easy to understand

For a complete reference see the manual [1].

LANguage for Compiler Education

Introducing
ACSE

A very small subset of C99:

m standard set of arithmetic/logic/relational operators
m reduced control flow statements (while, do while, if)
m a scalar type (int)

m unidimensional arrays of integers
Very limited support to 1/0:

reading read(var) stores into var an integer read from
stdin

writing write(var) write var to stdout

Intermediate Representation

LANCE code is first translated into a RISC-like language:

m few essential computing instructions (e.g. ADD)
m memory instructions (e.g. LOAD)

m jumps (e.g. BEQ)

m special /0O instructions (e.g. READ)

[Two addressing modes:

Assembly

direct data inside the register

indirect data at memory location pointed by register
Data storage:

m unbounded registers

m unbounded memory

How to Read the Manual |

Introducing
ACSE

Instructions come into four flavors:

Instructions classification

Alessandro

Type Operands Example

Ternary 2 1 destination and 2 ADD R3 R1 R2

source registers

Binary 1 destination and ADDI R3 R1 #4
1 source register, 1
immediate operand

Unary 1 destination reg- LOAD R1 LO
ister, 1 address
operand

Jump 1 address operand BEQ LO

Intermediate
Assembly

How to Read the Manual Il

Operands:

Operands Syntax

Type Syntax Notes

Directed addressing Rn The n-th register

with register

Undirected addressing (Rn) Data whose ad-

with register dress is store into
the n-th register

Address Ln The address identi-
fier by the n-th la-
bel 3

Immediate #n The scalar integer
constant n

Intermediate
Assembly

2Destination and second source indirectly addressable.
3More on this later.

Register Notes |

Introducing
ACSE

Al iro

Barenghi, There are two special registers:

zero RO contains the 0 constant, cannot be written
status implicitly read /written by some instructions, not
directly accessible

The status register contains four bits 4:

Intermediate
Assembly

m negative
m zero

overflow

carry

Register Notes Il

Special registers are essential:

Constant loading

Since RO always contains 0,
ADDI R3 RO #5 R3 is filled with 5

Intermediate Branch is taken only when

sy the zero bit in the status Conditional jumping

register isn't set:

SUBI R3 R1 1
m zero bit implicity set by BNE LO
SUB when its result is 0

*Heavily exploited by jumps.

Addressing Modes by Example

This should be known, anyway ...:

Direct addressing: Indirect addressing:

ADD R3 R1 R2 ADD R3 R1 (R2)
. D

R1 1 Oxd 0 R1 1 Oxd 2

R2 2 Oxe 0 R2 | Oxd | Oxe 0

Intermediate @ R3| 0 |Oxf| O o R3| 0 |[Oxf| O
Assembly ‘% . <

) Register file ~ Memory &2 Register file ~ Memory

R1 1 Oxd 0 R1 1 Oxd 2

R2 2 Oxe 0 R2 | Oxd | Oxe 0

o R3 3 Oxf 0 kol R3 8 Oxf 0
& &

< Register file ~ Memory < Register file ~ Memory

Contents

Introducing
ACSE

Parsing

HANCE Parsing LANCE

Reading |

To parse we need:
Elg*=1¢]

scanner see Acse.lex
parser see Acse.y

ACSE is a syntax directed translator:

LANCE m translation is performed while parsing LANCE files

B once an instruction is emitted, you cannot go back

#ZOUTECH
7, SR\

Reading Il

A simple example:

anslat b + 4

ADD R1 RO R3

assign_statement

/

IDENTIFIER ASSIGN

ADDI R3 R2 #4

’
|
|
|
|
| N
|
| I
|
I I
I : i B
I | i B
. ! | I © | | ADDI R3 R2 #4
Parsing | a = : exp PLUS exp Iy £
LANCE ! \ ' S || ApD R1 RO R3
I b 9
| : h a
|
: | IDENTIFIER + NUMBER | :
|
| Iy
|
I Iy
|
I | : |
! I b 4 I
I 3 I
\ 7

Variables |

A LANCE variable is matched by the IDENTIFIER token:

m custom typed to a char*, the name of the variable

Type declaration with bison

%union {

Parsing

LANCE char*x svalue;
t_axe_expression expr;

Variables |l

Introducing
ACSE

andro

: Semantic values are initialized by the scanner:

"‘Fut.‘n.u
Saving identifier names

{1ID} {
yylval.svalue = strdup(yytext);

Parsing return IDENTIFIER;

LANCE
+

Variables |1l

Bindings declared inside Acse.y:

Rules binding

%token <svalue> IDENTIFIER

htype <expr> exp

Parsing

LANCE

m the same for other constructs (e.g. numbers)

m non-terminals can be typed too (e.g. exp)

o N2

More Info about Variables

Internal representation of variables:

ACSE variable representation

typedef struct t_axe_variable {

int isArray;
int arraySize;

Parsing

SAlES charx* ID;
} t_axe_variable;

To get here, use getVariable °.

®In axe_engine.h.

Scalars |

el Scalar variables management:

symbol table low level interface, almost useless for this course

helpers into axe_utils.h many high level functions

Thumb rule:

Parsing
LANCE
m each scalar variable is stored in a register

20

}D Scalars Il
2\

Let's try to print a scalar ©:

Writing an integer Intermediate

int a; WRITE R1 O
e write(a); HALT

Scalars Il

How does ACSE translate the code?

Touched ACSE code - Write rule *

write_statement:
WRITE LPAR exp RPAR {

_ location = $3.value;
Parsing
LA gen_write_instruction(program,
location);

Scalars IV

Introducing
ACSE

Touched ACSE code - Expression rule

Alessandro

exp: NUMBER { ... }
| IDENTIFIER {
int location;

location = get_symbol_location/(
program, $1, 0);
$$ = create_expression(location,
Hersing REGISTER) ;
LANCE
free ($$);

®lmplicitly initialized to 0.
"Simplified view.

Arrays |

artara

Internal representation: base plus offset:

m no need to known technical details

® axe_array.h contains helpers for common operations

Parsing
LANCE

Arrays Il

Now, try printing an array element:

Array output Intermediate

int a[10]; MOVA R1 LO
write(al[1]); ADDI R1 R1 #1
Parsing ADD R.2 RO (Rl)
LANCE
WRITE R2 O

HALT

Arrays Il

Introducing And inside ACSE?

ACSE

Alessandro

Touched ACSE code - Expression rule &

exp: NUMBER { ... }

| IDENTIFIER LSQUARE exp RSQUARE {
int reg;

reg = loadArrayElement (program,
Parsing $1 s $3);
HANCE $$ = create_expression(reg,

REGISTER) ;
free($$);

80bviously, write rule still touched.

Contents

Introducing
ACSE

Bibliography

Bibliography

Bibliography

Introducing
ACSE

[d A. Di Biagio and G. Agosta.
Advanced Compiler System for Education.
http://corsi.metid.polimi.it, 2008.

[§ Formal Languages and Compilers Group.
Formal Languages and Compilers — CorsiOnline.
— http://corsi.metid.polimi.it, 2010.

	Introduction
	Languages
	LANCE
	Intermediate Assembly

	Parsing LANCE
	Bibliography

