Linear ACSE

Linear ACSE

Alessandro Barenghi Ettore Speziale Michele Tartara

Politecnico di Milano

e
i 'm Contents
2\

Linear ACSE

Introduction

Assignment

Expression
m Arithmetic
m Comparison

Bibliography

Contents

Linear ACSE

Introduction

Introduction

Work-flow

The LANCE files are a list of statements:
m see Acse.y

We have just seen a simple statement:

introduction m the write statement

It is linear:

m no conditional

m translation depends only on write itself
Today we will see something close:

m assignments

B expressions

Interlude

Before going forward:

m how is it possible to generate instructions?
An helper function is associated to every instruction:

Introduction m it allows to emit the instruction hiding low level details

m see axe_gencode.h

Generating instructions

Instruction Helper

ADD gen_add_instruction
ADDI gen_addi_instruction
READ gen_read_instruction

BEQ gen_beqg_instruction

Contents

Linear ACSE

Assignment

Assignment

A Complete Statement

Linear ACSE

Consider the simple assignment a = 4:

m we want to copy 4 inside a
m we need both a (left-hand side) and 4 (right-hand side)

Assignment

When do we known all the data needed?

m when the parser recognize the assign_statement rule

Generalized Assignment |

Linear ACSE

Think at left-hand sides:

scalar stored in a register

: array cell stored somewhere in the memory
. Moreover:

m they have different syntax
And right-hand sides:

m just something evaluable to a scalar

Generalized Assignment ||

Left-hand sides are too different:

m the rule must be specialized

Tartara

Right-hand side are equal:

m should be factorized through the exp rule

Assignment

Now, better to switch to code:

m look at the assign_statement rule in Acse.y
m scalars are stored into registers and manually handled !

m arrays are managed exploiting a function from
axe_array.h

'The if is explained later.

Contents
2\

Linear ACSE

Expression

Expression
m Arithmetic
m Comparison

The Need to Type

Linear ACSE
Most of ACSE code deals with expressions:

B assignments
m arrays indexing

m conditionals

The exp has been typed to generalize expressions management:

Expression

Expression type 2

typedef struct t_axe_expression {
int value;
int expression_type;

} t_axe_expression;

2See axe_struct.h.

Building Expressions

The expression framework:

Tartara m allows to combine expressions together
m generates code to compute expressions

m described in axe_expressions.h

Expression

They are built recursively:
m two base cases: IMMEDIATE and REGISTER expressions
m intermediate values kept into REGISTER expressions

m create_expression allows to build base expressions

Expression Values

Linear ACSE

The expression value is stored into the value field:

immediate the value of the immediate

register the register storing that expression

Un-boxing expressions

Expression

if ($3.expression_type == IMMEDIATE)
gen_addi_instruction(..., $3.value);
else
gen_add_instruction(..., $3.value,

CG_DIRECT_ALL);

Linear ACSE

Very simple expressions:

Adding two expressions

exp:
| exp AND_OP exp {
Arithmetie $$ = handle_bin_numeric_op(program,
$1,
$3,
ANDB) ;

Lesser Than

Relational operators handled with expressions too:

Comparing two expressions

exp:

_ | exp LT exp {
Comparsen $$ = handle_binary_comparison(
program, $1, $3, _LT_);

Contents

Linear ACSE

Bibliography

Bibliography

@ Bibliography

Linear ACSE

[d A. Di Biagio and G. Agosta.
Advanced Compiler System for Education.
http://corsi.metid.polimi.it, 2008.

[§ Formal Languages and Compilers Group.
Bt sy Formal Languages and Compilers — CorsiOnline.
http://corsi.metid.polimi.it, 2010.

	Introduction
	Assignment
	Expression
	Arithmetic
	Comparison

	Bibliography

