
Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Introducing Parallelism

Ettore Speziale

Politecnico di Milano

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Contents

1 Introduction

2 Implicit Parallelism

3 Explicit Parallelism

4 Conclusions

5 Bibliography

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Contents

1 Introduction

2 Implicit Parallelism

3 Explicit Parallelism

4 Conclusions

5 Bibliography

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Why Bother About Parallelism

Current trend in computer
architectures:

increasing cores count

TDP a vs Cores Count

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

0

20

40

60

80

100

T
D

P
/

C
or

es
[W

/
C

o
re

s]

aThermal Design Power

Frequency vs Cores Count

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

500

1,000

1,500

2,000

2,500

3,000

F
re

q
u
en

cy
/

C
or

es
[M

H
z
/
C

o
re

s]

Caused by:

power & memory walls

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Walls

Limits in performance scaling identified by walls:

frequency performance can scale with frequency, at the cost
of more power-hungry processors – not
sustainable

memory improvement of processor technology is faster
than the one of memory elements – bottleneck
becomes feeding processors with data

Continuing on this road leads to:

fast and power-hungry processors

wasting cycles waiting for data from memory

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Power Wall

Traditional way to improve micro-processors performance was:

increase clock speed

However, it directly influences absorbed power 1:

Pdynamic v
1

2
· C · v2 · f

Lowering voltage requirements allows limiting Pdynamic :

partially masks frequency contribution

allows continue exploiting frequency increase

positive effect also on static power:

Pstatic v istatic · v

Nowadays frequency must be faced
1CMOS technology

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Computer Designer Answer

Containing power is trivial:

remove power-hungry components 2 from designs

limit core frequency

Guarantee performance is little bit difficult:

increase number of available processing elements

increase number of independent channels for accessing
memory

Strategy is clear:

we cannot improve execution latency

split computation into chunks

focus on increasing throughput

2e.g. branch predictor

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Programmers Observation

The programming model is different:

old abstraction of a single flow of control automatically
optimized by compiler/hardware does not hold

parallelism must be explicitly expressed inside the language

. . .

Computer designers have exposed a more complicated model to
guarantee performance:

more effort required to programmers in order to write
efficient code

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

The 13 Dwarves

A key rule when dealing with parallel application is that there is
not a preferred language/technique/design:

for each problem, you should select the best
language/technique/architecture combination

Relevant problems has been analyzed in [1]:

13 problems used as a reference to drive parallel
architectures/programming research

can be used to identify the best parallelization strategy for
a kind of problem

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Contents

1 Introduction

2 Implicit Parallelism

3 Explicit Parallelism

4 Conclusions

5 Bibliography

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Instruction Level Parallelism

Instruction Level Parallelism overlap the execution of different
instructions:

aims at maximizing instruction completion throughput

dependences among instructions limit its applicability

In order to fully exploit Instruction Level Parallelism:

instructions are analyzed while executing them, in order to
detect dependencies

instructions are scheduled considering only the
dependencies detected at run-time

independent instructions are used to fill execution slots not
usable due to some dependency among other instructions

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Instruction Level Parallelism
Example

Consider the following example:

Sequential Addition

f o r (i = 0 ; i < 1 0 ; ++i) {
c [i] . x = a [i] . x + b [i] . x ;
c [i] . y = a [i] . y + b [i] . y ;

}

branch
predictor used
to detect
whether
multiple
iterations can
be overlapped

instructions in loop body analyzed to detect whether they
can be overlapped/re-ordered

caches used to exploit the regular access pattern to the
array – 0, 1, . . . , i , i + 1, . . . , 9

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Data Parallelism

Some applications access data in a predictable way:

e.g. visit arrays using a regular access pattern

These application exposes parallelism at the data level:

there is a large data-set

operations on each element of the data set is quite
independent from the other

There is a natural source of parallelism:

independent operations on data

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Vectors

Basic example of independent operation on data comes from
high-performance computing:

data is a set of bi/tri/quad dimensional points
representing some kind of space – e.g. the speed of the
airflow surrounding the wing of an aircraft

you have to add/sum/multiply these points – e.g.
simulate the evolution of the airflow speed around the
wing, varying the wing angle of attack

Parallelism gathered from operations between the components
of the vector:

you have to use a special data structure, a vector

Hardware performs operations between vector efficiently:

no need to check dependencies

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Multi-media Instruction Set Extensions

Vectors introduced by vector processors:

allows using vectors with an arbitrary number of
components

Vectors also used in multimedia applications 3:

modern architectures exposes specialized instruction set
for performing operations between vectors of a fixed size

slightly different from vector processors

Fixed size is an hardware constraint:

Intel MMX uses vectors of 64 bits

Intel SSE uses vectors of 128 bits

. . .

3MPEG4 decoding

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Multi-media Instruction Set Extensions
The Hardware

A vector can contains a different number of components:

an SSE-enabled 4 processors handles parallel operations
between vectors of 2 int64 t or 4 int32 t or . . .

Speedup comes from:

member-wise operations performed in parallel

memory operations focus on throughput rather than on
latency – specialized load/store units

4Vector size is 128 bit

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Multi-media Instruction Set Extensions
The Software

Hardware vectors exposed to programmer through a compiler-
and architecture-specific interface:

Defining Vectors with GCC-compatible Compilers

typedef
a t t r i b u t e ((v e c t o r s i z e (1 6)))

i n t 6 4 t s t o r a g e t ;

Vector types are identified by attaching the vector size
attribute to a native type:

the native type is vector element type

the attribute takes as parameter the vector size

defined vector size must match architecture vector size 5

5With SSE 128bit = 2× 64bit = 16bytes

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Multi-media Instruction Set Extensions
Operations

Vector types can be used as native types:

a + b, a − b, . . .

a == b, a != b, . . .

Vector elements can be accessed using brackets:

a [0] , a [1] , a[i], . . .

Advanced operations performed through builtins:

function calls replaced by the compiler with optimized
hardware instructions

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Multi-media Instruction Set Extensions
Vector Shuffle

Vector Shuffle

a = b u i l t i n s h u f f l e v e c t o r (a , a ,
3 , 2 , 1 , 0) ;

shuffle extract elements from
vector operands – a and a

indices following vector
operands identify which
elements to extract

Assembly

p s h u f d $27 , %xmm0, %xmm0

vector operands
must have the
same type

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Multi-media Instruction Set Extensions
Vector Shuffle

Vector Shuffle

a = b u i l t i n s h u f f l e v e c t o r (a , a ,
3 , 2 , 1 , 0) ;

Let Sz be the lenght of vector operands:

index i ∈ [0, Sz − 1] refers to the i-th element of the first
vector operand

index i ∈ [Sz , 2 ∗ Sz − 1] refers to element i − Sz of the
second vector

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Multi-media Instruction Set Extensions
Fine-control of Hardware

Vectors allows to perform more complex operations in parallel:

you have to use architecture-specific builtins

Square Root Source

#inc lude <xmmintr in . h>

. . .

y = mm sqrt ps (x) ;

Square Root Assembly

s q r t p s %xmm1,
%xmm0

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

SAXPY
Single precision A times X Plus Y

Showing code on slides is both boring and error-prone, so I will
use as much as possible vi and the shell. All sources are
available on the course site. They are heavily commented. On
slides there are only some tips.

“Talk is cheap, show me the code” [4]

Given two vectors y and x and a scalar a, SAXPY computes:

yi = a · xi + yi

In saxpy.cpp the kernel is implemented using different
techniques. In order to see the effectiveness of each technique,
compile saxpy.cpp without optimizations.

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Contents

1 Introduction

2 Implicit Parallelism

3 Explicit Parallelism

4 Conclusions

5 Bibliography

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Processes and Threads

Explicitly parallelizing an application requires finding chunks of
code that can run in parallel:

each chunk of code is executed by a process/thread

sometimes, synchronization is needed

Suitable for coarse-grain parallelization:

e.g. serving multiple HTTP connections in parallel

Requires application-specific optimizations:

e.g. use a process/tread pool for serving connections

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Tasks as Elementary Units of Work

Working with threads/processes is difficult because:

you have to manually split work between them

synchronization is needed

Splitting work is actually a multi-phase process:

identify an unit of work that can be run in parallel – a task

group task in order to equally distribute them between the
available processes/threads

decide how many processes/threads create

Modern parallel framework focus on defining tasks:

assigning tasks to executors – e.g. processes or thread – is
automatically managed

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Tasks and Data Parallelism

With data-parallelism a task is the work performed on a section
of accessed data:

Scalar SAXPY

f o r (unsigned i = 0 , e = n ; i != n ; ++i)
y [i] += a ∗ x [i] ;

The update of the element y[i] is independent from the others:

it is a task

You have n different tasks, one for each iteration:

the loop can be fully parallelized

the unit of work – the tasks – in this context is the single
iteration of the loop

we call it parallel iteration

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

OpenMP

OpenMP is an extension of C, C++, Fortran focused on
handling data-parallel computations through parallel loops:

Parallel Sum

#pragma omp p a r a l l e l f o r
fo r (i = 0 ; i < 1 0 ; ++i) {

c [i] . x = a [i] . x + b [i] . x ;
c [i] . y = a [i] . y + b [i] . y ;

}

The #pragma tells compiler that all iterations are
independent, thus they can be executed in parallel

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

OpenMP
Programming Model

An application is executed by multiple worker threads:

one of them, executes the main function – master thread

When the master thread encounter a parallel section:

it awakes all the other worker threads

the parallel section is executed by all workers, in parallel

Parallel Section

#pragma omp p a r a l l e l
{ . . . }

Fork-Join Execution

At the end of the parallel section:

each thread wait for the others – barrier synchronization

after waiting, only the master continues execution

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

OpenMP
Work Sharing Constructs

During the execution of a parallel section, threads encounter
work-sharing constructs:

all threads collaborates to execute the construct

Explicit Parallel For

#pragma omp p a r a l l e l
{
#pragma omp f o r
fo r (i = 0 ; i < 1 0 ; ++i) {

c [i] . x = a [i] . x + b [i] . x ;
c [i] . y = a [i] . y + b [i] . y ;

}
}

#pragma omp for
defines 10
iterations:

automatically
partitioned
between
threads

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

OpenMP
Parallel For Syntactic Sugar

A #pragma omp parallel containing only a #pragma omp for
can be written in a more compact form:

Parallel For

#pragma omp p a r a l l e l f o r
fo r (i = 0 ; i < 1 0 ; ++i) {

c [i] . x = a [i] . x + b [i] . x ;
c [i] . y = a [i] . y + b [i] . y ;

}

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

OpenMP
Parallel For Constraints

A parallel loop

for(init ; comp; update)

must respect the following constraints:

init must initialize an integer variable iv

comp must compare iv with a run-time constant using one
operator from { <, <=, >=, > }
iv must be incremented/decremented by a run-time
constant – e.g. iv += 4, iv −= stride

These constraints allow the compiler parallelizing the execution
of loop iterations

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

OpenMP
Synchronization Directives

Synchronization #pragma predicates over a code-block:

Synchronization

#pragma omp p a r a l l e l f o r
fo r (i = 0 ; i < 1 0 ; ++i) {

#pragma omp c r i t i c a l
f o o () ;

#pragma omp master
bar () ;

#pragma omp b a r r i e r
baz () ;

}

omp critical

critical
section

omp master

code-block
executed only
by the master
thread. No
synchroniza-
tion at block
enter/exit

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

OpenMP
Synchronization Directives

The #pragma omp barrier directive performs a barrier
synchronization:

all threads must meet at the barrier

a thread is allowed to leave the barrier only after all other
threads reach the barrier

An implicit barrier is executed after each #pragma omp for

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Contents

1 Introduction

2 Implicit Parallelism

3 Explicit Parallelism

4 Conclusions

5 Bibliography

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Parallel Programming

Writing parallel code is difficult:

many different aspects to be considered at the same time

difficult to think considering more than one execution flow

The goal of this course is to teach you that:

there is not the best language

for each problem, you should choose the most suited
language

The same holds for parallel programming:

for each problem, you should chose the most suited
language/technique

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Contents

1 Introduction

2 Implicit Parallelism

3 Explicit Parallelism

4 Conclusions

5 Bibliography

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Bibliography I

Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J.
Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson,
William L. Plishker Lester, John Shalf, Samulel W.
Williams, and Katherine A. Yelick.
The Landscape of Parallel Computing Research: A View
from Berkeley.
Technical report, EECS Department, University of
California, Berkeley, 2006.

Bruce Eckel.
Thinking in C++ – Volume One: Introduction to Standard
C++.
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html.

Introducing
Parallelism

Ettore
Speziale

Introduction

Implicit
Parallelism

Explicit
Parallelism

Conclusions

Bibliography

Bibliography II

Bruce Eckel and Chuck Allison.
Thinking in C++ – Volume Two: Practical Programming.
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html.

Linus Torvalds.
Re: SCO: ”thread creation is about a thousand times
faster than onnative.
https://lkml.org/lkml/2000/8/25/132.

	Introduction
	Implicit Parallelism
	Explicit Parallelism
	Conclusions
	Bibliography

