
Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Memory Management

Ettore Speziale

Politecnico di Milano

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Contents

1 Introduction

2 Basic Memory Management

3 Basic Garbage Collection

4 Conclusions

5 Bibliography

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Contents

1 Introduction

2 Basic Memory Management

3 Basic Garbage Collection

4 Conclusions

5 Bibliography

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Why Should Memory be Managed?

Every program uses memory to store data:

Memory Hierarchy

registers

caches

RAM banks

disks

registers are fast, small,
and expensive

. . .

disks are slow, huge,
and cheap

Language specifications 1 does not expose the structure of the
memory hierarchy:

but inaccurate management of memory leads to using slow
levels of memory hierarchy – e.g. swapping to disk

1usually

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Memory Model

State-of-the-art general purpose languages memory model:

Heap:

store stuffs

manually managed –
programmer must
explicitly allocates
memory on the heap

partially managed –
you can forget
deallocating memory, it
continues working a

contents not
predictable

ain general

Stack:

store global variables

store function frames;
each frame store local
variables

automatically managed
– calling a function
allocates memory,
returning free memory

possible predicting its
contents

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Memory Model
The Big Picture

Initial Scenario

Stack

Heap

The red block is not referenced by any pointer:

it is a leak

Blue blocks store data, while green blocks hold pointers

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Where we Are

From your curricula:

C stack is good, heap is a needed evil: use it with
care, and always remember to correctly
de-allocate memory

Java stack is good, but exploiting its features to
increase code quality/performance requires
knowing how it works and strictly following a
rigid programming discipline: use it only for
storing variables for native types, put all other
variables on the heap

Post Scriptum:

Java correctly managing the heap is tricky. Just
allocate memory, the virtual machine will perform
some black-magic to automatically deallocate
memory

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

What Will we See?

This class is about:

understanding how stack can be used to manage memory

finding stack-like behaviours, and re-use stack-based
techniques to manage the associated memory

introducing black-magic needed to automate heap
management

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Contents

1 Introduction

2 Basic Memory Management

3 Basic Garbage Collection

4 Conclusions

5 Bibliography

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Stack Behaviour

Consider the following example:

Stack-based Allocations

void f o o () {
Baz baz ;
i n t bar ;

}

storage for bar and baz
allocated when foo is
called

storage for bar and baz
reclaimed when
returning from foo

Let Bar be a class. Stack-allocation induces a regular and
predictable behaviour:

constructor called after memory allocation

destructor called before memory reclamation

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Stack Allocation
Allocating Buffers

Stack-allocated vars can be used to manage memory:

Manual Allocation

i n t f o o () {
i n t ∗buf , r e t ;

buf = new in t [HUGE] ;

. . .

de lete [] bu f ;

return r e t ;
}

Automated Allocation

i n t f o o () {
B u f f e r <int> buf ;
i n t r e t

. . .

return r e t ;
}

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Stack Allocation
Automatic Buffer Implementation

Automatic Buffer

template <typename Ty>
c l a s s B u f f e r {
pub l i c :

B u f f e r (s i z e t s i z e = HUGE) :
buf (new Ty [s i z e]) { }

˜ B u f f e r () { de lete [] bu f ; }

pr i va te :
Ty ∗ buf ;

} ;

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Resource Acquisition Is Initialization

The trick used with buffers can be generalize:

RAII a C++ idiom [3]

It exploits C++ scoping rules:

place RAII object on the stack

constructor initialize RAII object

destructor finalize RAII object

Can be applied to other contexts:

Manual Lock

void Bar : : mutual () {
l o c k . a c q u i r e () ;
l o c k . r e l e a s e () ;

}

Synch Block

void Bar : : mutual () {
Sync sync (l o c k) ;

}

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Owning Pointers

The Buffer<Ty> class has a problem:

it explicitly de-allocates memory for the buffer

To improve code quality, we need something that:

acts like a pointer

manages the life-time of the pointed object

we call it an owning pointer

For non-array allocations, you can use C++ std :: auto ptr:

otherwise, you have to code your owning pointer
– e.g. llvm :: OwningArrayPtr

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Owning Pointers
Buffer

Let std :: auto arr ptr an array owning pointer:

Yet Another Automatic Buffer

i n t f o o () {
s t d : : a u t o a r r p t r <int> buf ;
i n t r e t

buf . r e s e t (new in t [HUGE]) ;

. . .

return r e t ;
}

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Reference Counting

Owning pointers can be extended to scenarios when the
pointed object is shared:

an owning pointer cannot be used – it is not safe deleting
the object when the owning pointer is destroyed, there can
be other pointers referencing it

we must count the number of times the object is
referenced

when the counter reaches 0, we can delete it

the mechanism is called reference counting

the data structure is called shared pointer

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Smart Pointers

Owning and shared pointers are smart:

if used correctly, they guarantee automatic and fast
memory management

Shared pointers comes with a particular problem:

loops between objects involving shared pointers must be
avoided – impossible detecting that objects in the loop are
no more used

No Problems with DAGs References Loop

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Pool Allocation

Sometimes it meaningless allocating new objects:

e.g. allocating and initializing the object is an expensive
operation

In these cases you can exploit pool allocation:

for each type, keep a set of objects of that type – a pool

when a new instance of type foo is needed, look in the
pool

if not empty, allocate a new object by removing it from
the pool

otherwise, create a new object

in any case, when deleting the object return it into the
pool

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Pool Allocation
Thread Pool

Typical example of pool is the thread pool:

creating threads is expensive

cache them using an allocation pool

Thread Pool

c l a s s Thread {
pub l i c :

s t a t i c Thread &g e t () ;
s t a t i c void put (Thread &t h r) ;

pr i va te :
s t a t i c s t d : : v e c t o r <Thread ∗> p o o l ;

} ;

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Pool Allocation
Thread Pool Usage

Thread instances managed through factory functions:

Thread Pool Usage

Thread &t h r = Thread : : g e t () ;
. . .
Thread : : put (t h r) ;

Of course, Thread constructors must be private:

Thread instaces created only using factory functions

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Pool Allocation
Creating Threads

Implementation is trivial:

Creating Threads

Thread &Thread : : g e t () {
i f (p o o l . empty ()) {

return ∗(new Thread ()) ;

Thread ∗ t h r = p o o l . back () ;
p o o l . pop back () ;

return ∗ t h r ;
}

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Memory Pool
Allocation

Heap allocation requires finding a free block of memory with a
given size:

the allocator simple keeps a list of free blocks – free list

let n be the size of such list: allocation cost is O(n)

Heap as Seen by new

Stack

Heap

Free List

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Memory Pool
Deallocation

Dellocation requires returning a block back to the free list:

heap can be fragmented

once in a while it must be de-fragmented – e.g. every n
allocations

Fragmented Heap

Stack

Heap

Free List

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Memory Pool
Improving Performance

We can improve alloocation performance by:

consider a small set of possible size ranges

keep a free list for each range

Multiple Free Lists

Stack

Heap

Free Lists

Faster than before, but:

alloc time is O(n)

Optimization:

use pool allocation
to manage
frequently instanced
types

alloc time is O(1)

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Memory Pool
Pool Allocation

Parametric Pooled Allocator

template <typename Ty>
c l a s s A l l o c a t o r {
pub l i c :

s t a t i c void ∗operator new(s i z e t s i z e) ;
s t a t i c void operator de lete (void ∗ addr) ;

pr i va te :
s t a t i c s t d : : v e c t o r <Ty ∗> p o o l ;

} ;

Overriding operator new and operator delete allows using
standard interface for allocating objects

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Thread-based Allocators

What about threads?

free lists/allocators are shared resources

you need to synchronize threads while accessing them

but synchronization is expensive

Solution is to avoid synchronization:

each thread has a private allocator

no synchronization at alloc-time

synchronization at free-time needed only when current
thread is different from the one who has allocated the
block

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Contents

1 Introduction

2 Basic Memory Management

3 Basic Garbage Collection

4 Conclusions

5 Bibliography

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

What is Garbage Collection?

Garbage collection is a technique used to manage the heap:

it simplify heap management by avoiding programmers
explicitly freeing memory blocks once they becomes
unnecessary

unused blocks are automatically identified and freed

Reference counting is a simple garbage collector:

counts references to memory blocks – e.g. objects

when counter reaches 0, free used memory

Garbage collector usually used with high-level languages:

its efficiency depends on language-specific support

C/C++ lacks needed data-structures, thus not very
efficient with these languages

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Starting Point

Let us consider the following problem:

we want to implement a garbage collector

we can allocate blocks on the heap

we have to find a way to identify unused blocks and free
them

Reference counting is not a general technique:

unable to detect loops between blocks

However, we can exploit a similar concept:

we must observe pointers

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Tracing Collectors

A tracing garbage collector assumes blocks are the nodes of a
graph:

an edge from node foo to node bar means that inside
block foo there is a pointer referencing node bar

on the graph there are some special nodes. They represent
pointers on stack referencing objects in the heap

these pointers constitutes the root set

Tracing collection is simple:

visit the graph starting from nodes in the root set

after graph traversal, unvisited blocks represent blocks no
more referenced by the application – free them

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Tracing Collectors
Reference Scenario

Heap and Stack in Tracing Collectors

Stack

Heap

Root set contains two pointers:

stack-allocated pointer referencing stack-allocated data is
not considered by garbage collector

Red block not allocated by garbage collector:

not considered for collection

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Tracing Collectors
The Challenging Part

The big problem of tracing collectors is detecting the root set
and pointers inside blocks:

managed languages you cannot use pointers, you have to use
references 2. The compiler/runtime knows
locations of references, so the garbage collector
knows where pointers are – precise garbage
collection – e.g. Java, LISP

unmanaged languages you can use pointers. The contents of
heap-allocated blocks are unknown. The root set
is unknown. Both problems derive from a weak
type system and usage of pointer arithmetics –
conservative garbage collection – e.g. C, C++

2Pointers without arithmetic

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Conservative Garbage Collectors
Finding Pointers

With unmanaged languages, pointers must be estimated:

the garbage collectors knows the range of addresses
forming the heap

it also knows stack base and top

Root set can be estimated as follows:

interpret the stack as an array of pointers

walk the whole array

if an element of the array points to something falling inside
garbage collector-managed heap, put it into the root set

The same is done for each block inside the heap:

interpret the block as an array of pointers

if an element of the array points to something falling
inside the heap, it is a successor of the block

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Visiting the Heap

Knowing the root set and how detecting pointers inside heap
blocks, we can visit the heap looking for garbage:

there are three basic techniques

they differentiate on how heap is managed

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Mark and Sweep

Start from the root set:

visit the graph

mark each visited node

Then:

scan all blocks in the heap

if a block is not marked, it is garbage – free it

Collection is fast and simple, but:

induces heap fragmentation

free lists are needed to keep track of free blocks

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Mark and Sweep
Example

Free list is empty before collection:

no blocks available for allocations

Before Collection

Stack

Heap

After Collection

Stack

Heap

Free List

After collection free list holds pointer to available blocks

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Mark and Compact

Goal is to improve mark and sweep performance by
de-fragmenting the heap during the sweep phase 3:

scan all blocks in the heap

if a block is not marked, it is garbage – next block can be
shifted, in order to fill the slot occupied by the unmarked
block

at the end of the collection, all marked object are
compacted on the bottom of the heap – free space starts
after last marked object

3Mark phase is unchanged

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Mark and Compact
Notes about Compaction

Mark and compact moves blocks:

pointers to blocks must be updated – pointer reversal

it requires precise information about pointers – usable only
with managed languages

multiple sweep phases can be executed – e.g. finding
unmarked objects, computing deltas in freed space, update
pointers to marked objects, compact marked objects

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Mark and Compact
Example

Mark and sweep needs a free list because free blocks can be
anywhere in the heap

After Mark and Sweep

Stack

Heap

Free List

After Mark and Compact

Stack

Heap

Mark and compact can avoid using a free list:

free blocks are always on top of the heap

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Copying Collectors

Copying collectors partition the heap into two segments:

from-space holds reachable blocks. Allocation of new blocks
are performed here – all blocks in the graph are
stored here

to-space a support space, used during collections

As usual, collection starts from the root set:

for all visited block, move it from the from-space to the
to-space

after moving a block, overwrite old location with a mark,
recording block new address in the to-space

if a block has already been visited, its new address is found
in the from-space – use it to perform pointer-reversal

At the end of the collection, swap from-space and to-space

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Copying Collectors
Comment

Copying collectors visit blocks only one time:

no need of multiple sweeps to correctly update pointers

pointers are updated while walking the graph

Before Collection

Stack

From-space

Just Before Swapping Spaces

Stack

To-space From-space

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

When Should Memory be Collected?

The ideal collection instant is when the number of reachable
block is minimum:

time spent in graph traversal is minimized

freed memory is maximized

However, detecting this instant is not easy:

memory should be observed, but this requires time and
since this preventes using the same time for running user
program, garbage collectors play statistic – e.g. start
collection when free space is around 30% of heap size

basic algorithms execute collection inside memory
allocation routines – e.g. a block is needed, and free space
is below the threshold: trigger collection

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Contents

1 Introduction

2 Basic Memory Management

3 Basic Garbage Collection

4 Conclusions

5 Bibliography

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Real-world Memory Allocation

For every-day applications:

malloc/new provides acceptable performances

For high-performance, allocation-intensive applications:

use a custom allocator, in order to optimize heap
management

advanced libraries – e.g. C++ STL – allows to configure
the internally used memory allocator

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Real-world Garbage Collection

We have seen the basic algorithms:

production-quality garbage collectors partition heaps in
section, each manages by a basic algorithm

state-of-the-art collectors are BDW [1] and G1 [2]

Please remember that:

garbage collection simplify memory management, but its
overhead is non-negligible

it is good for managing unstructured allocations

if the allocation pattern exposes some kind of regularity –
e.g. think about tree nodes –, owning/shared pointers
simplify memory management without incurring into
relevant performance penalties

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Contents

1 Introduction

2 Basic Memory Management

3 Basic Garbage Collection

4 Conclusions

5 Bibliography

Memory
Management

Ettore
Speziale

Introduction

Basic Memory
Management

Basic Garbage
Collection

Conclusions

Bibliography

Bibliography

Hans Boehm.
A Garbage Collector for C and C++.
http://www.hpl.hp.com/personal/Hans Boehm/
gc/index.html.

David Detlefs, Christine H. Flood, Steve Heller, and Tony
Printezis.
Garbage-first Garbage Collection.
In ISMM, pages 37–48, 2004.

Wikipedia.
C++ Programming/RAII.
http://en.wikibooks.org/wiki/C++ Programming/RAII.

Paul R. Wilson.
Uniprocessor Garbage Collection Techniques.
In IWMM, pages 1–42, 1992.

	Introduction
	Basic Memory Management
	Basic Garbage Collection
	Conclusions
	Bibliography

