programming

Meta-programming

Ettore Speziale

Politecnico di Milano

‘
Y "@ Contents
all

programming

Ettore
St ale

Introduction

Templates

Advanced Templates

Java to C++

Bibliography

Contents

Introduction

Introduction

What is Meta-programming?

Meta-programming is the writing of programs that:

Introduction

m write or manipulate other programs (or themselves) as
their data

Basically it is a technique:
B many languages supports meta-programming
C++ is a pragmatic:

m meta-programming is a cool stuff

m what | can do with it?

Motivating Example
Simple Stack

programming
Ettore Showing code on slides is both boring and error-prone, so | will
e use as much as possible vi and the shell. All sources are
Introduction available on the course site. They are heavily commented. On
slides there are only some tips.

“Talk is cheap, show me the code” [3]
A Java-to-C+H+ translation table is available at slides end.

Please refer to:

m cpp-stack.cpp
m cpp—no-template-stack.cpp

Simple Stack

Apply C-programmer Tricks

Introduction The basic stack implementation — cpp-stack. cpp:

m uses void * to abstract from stack type

m stores elements out-of-place
The macro version — cpp—no-template-stack.cpp:

m exploit macros to generate a piece of program

m allows storing elements in-place

Simple Stack

Out-of-place vs In-place Layout

COEUUS et Foo be a class, and let Bar be a type:

Ettc

Speziale m an instance of Bar is part of Foo state: how can it be
represented?

Introduction

out-of-place * Foo references an instance of type Bar

in-place 2 Foo holds an instance of type Bar

Out-of-place Layout In-place Layout

class Foo { class Foo {
Bar xbar; Bar bar;

I }:

1External
2|nternal

Out-of-place vs In-place Layout

Performance

et When speaking about performance:

Ettc
Speziale m in-place layout is more efficient

Introduction When accessing an instance of the container class — Foo — the
included content — Bar — is likely to be loaded in cache
together with its container

m we expect a lower amount of cache misses

Out-of-Place/External Stack In-place/Internal Stack
=—ry
(— P>
75 —>

Legend: P, = pointer to x, S, = storage for x

Comment to C-like Macro Programming

programming

Using macros code generation is not under control
Introduction

m no constraints on parameters
What we would is a similar feature:

m support code generation

B constraint parameters
The tool we need are templates:

m they allow implementing meta-programming

Contents

programming

Et

Templates

Templates

Hello Template World

et A template is composed by:

m a set of parameters

® a parametrized construct

Templates

Parameters can be:
types a built-in type — e.g. int
or an user-defined class — e.g. class Foo
values integer constants —e.g. 11

Parametrized constructs:

class template parameter used to parametrize data
member and member functions

function template parameters used to parametrize function
body

Hello Template World

Syntax

U The template keyword must be placed in front of parametrized
Ettore construct:

Speziale

Teempllice TPL — template < PARAM(, PARAM)* > CONSTRUCT

Class Parametrization Function Parametrization

template template
<typename Ty, <typename Ty>

int N> void bar(Ty baz) {
class Foo { baz. hello ();

Ty bar[N]; }

1

Hello Template World

Work-flow

programming

A template is just an declaration:
m it tells the compiler there is a parametrized constructs

The programmer instantiates the template:

Templates

m e.g. Foo<int, 4>

This will force the compiler generating the code for the
Foo<int ,4> class, that is an instance of the Foo template:

m if the template is instantiated twice with the same
arguments in the same compilation unit, code is generated
only one time

m otherwise, the same code can be generated more than one
time, increasing code-segment size

Hello Template World

Using Templates

To use a class template:

declare a variable whose class is a template class instance
— e.g. Foo<int, 4> foo
use the variable like a normal instance of a class

Templates

To use a function template:

m reference a template instance — e.g. call — by providing all
parameters needed to instantiate the template — e.g.
bar<Baz>(Baz())

Compiler try to infer template parameters from values used by
the template instance:

m the argument of the function template bar is of type Ty,
that is the template parameter

m you can call bar passing a Baz value — bar(Baz()) — this
allows the compiler inferring the value of the template
parameter — Baz

Meta-programming with Templates

Showing code on slides is both boring and error-prone, so | will
use as much as possible vi and the shell. All sources are
available on the course site. They are heavily commented. On
Templates slides there are only some tips.

“Talk is cheap, show me the code” [3]
A Java-to-C++ translation table is available at slides end.

Templates let C++ supporting meta-programming:

m cpp-template-stack.cpp shows how both type and
value parameters can be used

Specialization

programming

Given a template, it is possible specializing it:

m provide a different implementation for some type/value of
parameters

Templates

Specialization can be:

full specialization is done by assigning a type/value to
all template parameters
partial specialization is done by assigning a type/value to
some of template parameters

Partial specialization is supported only by class templates

Class Specialization

Example

Foo Full Specialization Foo Template

template <> template
Templates class Foo<char, 16> { <typename Ty,
char xbar; int N>
class Foo {
Ty bar[N];
b

Foo Partial Specialization

template <unsigned N>
class Foo<char, N> {
char bar[N];

1

Class Specialization

Comment

When instantiating the Foo template:

m compiler looks for a full specialization using the given
template parameters. If found, the full specialization is
used for code generation — e.g. Foo<char, 16>

Templates
m otherwise a partial template definition — e.g.

Foo<char, 4> — or the general template definition —
Foo<int, 4> — are used

Class templates supports default parameters:
Default Parameters

template m Foo<int> =
<typename Ty, int N = 16> Foo<int, 16>
class Foo { Ty bar[N]; };

Function Specialization

Example

The bar Template

template <typename Ty, int N>

Templates Ty bar() {
return Ty(N);
}
The bar Full Specialization
template <> m see also
int bar<int, 4>() { hello-template-
return 4; world.cpp

}

Templates Usage

Containers

programming

C++ Standard Template Library heavily uses templates:

Ettore
Speziale

m STL containers need to store different types of elements

m using templates it is possible defining elements storage

area and container-specific algorithms parametric on the
container element type

Templates

STL int Vector STL float Vector

std :: vector<int> std :: vector<float >
ints; floats;

ints.push_back (2); floats.push_back (2.0);
ints.push_back(3); floats.push_back(3.0);

Templates Usage

Parametric Container

Showing code on slides is both boring and error-prone, so | will
use as much as possible vi and the shell. All sources are
Templates available on the course site. They are heavily commented. On
slides there are only some tips.

“Talk is cheap, show me the code” [3]
A Java-to-C+H+ translation table is available at slides end.

The cpp-template-stack.cpp implements a simple
parametric stack

Contents

Advanced
Templates

Advanced Templates

Compile-time Computations

Factorial

Templates enables compile-time computations:

m toy example is factorial 3

Factorial

Advanced template <unsigned N>
struct fact {
enum { value = N % fact<N — 1> };

I

template <>
struct fact<0>
enum { value =1 };

b

—

3See fact.cpp

Factorial

Comment

programming

Factorial computation for 4:

referencing value using 4 starts factorial computation

the fact template is recursively instantiated, until
Gdanced template specialization for 0 is reached

Templates

the expression is fold at compile-time, thus computing 24

The key feature of factorial computation is exploiting enum to
trigger a compile-time computation:

m the compiler is forced to evaluate the fact<4>::value
expression because it must associate a constant integer to
the value enum

Generic Algorithms

Constraining Templates

Bare templates does not enforce parameters to implement an
interface:

m e.g. be usable with a function, providing a member
function, ...

Advanced
Templates

Popping Elements

template <typename Ty, unsigned N>
Ty Stack<Ty, N>::pop() {
if (top = 0)
abort ();

return storage[——top];

}

Constraints for Templates

programming

=8 Traits is a programming idiom used to force a template

parameter implementing some interface:

Traits for Error Handling

Advanced
Templates

template <typename Ty>
struct ErrorTraits;

template <>
struct ErrorTraits<int> {
enum { invalidValue = -1 };

H

Traits

Using Traits with Stack

Using traits it is possible returning an error value when trying
to pop from an empty stack:

Popping Elements with Error Traits

template <typename Ty, unsigned N>
Tempiates Ty Stack<Ty, N>::pop() {
if (top = 0)
return ErrorTraits<Ty>::invalidValue;

return storage[——top];

}

Example stack-visit.cpp shows how traits can be used to
visit a stack without caring about the actual stack
implementation

Code Factorization

programming

- One common use of templates is removing unnecessary casts:
o

Container Cast

elt = xreinterpret_cast<int x>(stack.pop());

Advanced

Templates
Container No-cast

elt = stack.pop();

However, using templates force compiler generating multiple
copies of the same code:

m templates always in-lined

Code Factorization

Exploiting Inheritance

A common technique to contain memory footprint is to
combine templates and class inheritance:

programming

m a class is split into a template-dependent and a
template-independent part

P The template-independent part is implemented in separate
Templates C|aSS:

m only used to contains template-independent code

m not intended to be an end-user interface

The template-dependent part derives from the
template-independent class:

m exploit services of base class to implement all
functionalities requested by the end-user

m uses templates to provide a kind interface to end-user

Code Factorization

Example

Showing code on slides is both boring and error-prone, so | will
use as much as possible vi and the shell. All sources are
available on the course site. They are heavily commented. On
slides there are only some tips.

Advanced “Talk is cheap, show me the code” [3]

Templates

A Java-to-C++ translation table is available at slides end.

The file stack-heap-stack.cpp implements an adaptive
stack. When its size is under the half of the capacity, internal
storage is used. Passing the half, stack is moved on the heap:

m StackBase contains template-independent code — e.g.
stack expansion

m Stack contains template-dependent code — e.g. push

Parametric Polymorphism

C++ templates partially implements parametric polymorphism:

m polymorphism is achieved at compile time through
template typename parameters

Full parametric polymorphism not supported by C++:

Advanced m e.g. Haskell type-classes allows to strictly require a type
Templates

oot implementing an interface in order to be used in a
parametric function

C++ approach is idiom-based:

m templates allows to perform some meta-programming
B to request a type implementing an interface, use traits

But traits are a programming technique:

m the compiler is unaware of their existence
m is up to the programmer correctly using them

Contents

programming

Java to C++

Java to C++

Java Concepts

programming

Java generics are not equivalent to C++ templates:

m C++ templates allows to perform computations at
compile-time

m they are Turing-complete
Java to C++

Java generics goal is different:
m free end-user from the burden of writing tons of casts

m enforcing some constraints — e.g. using extends with
generic classes

Contents

programming

Bibliography

Bibliography

Bibliography

ﬁ Bruce Eckel.
Thinking in C+4 — Volume One: Introduction to Standard
C++.
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html.

[@ Bruce Eckel and Chuck Allison.
Thinking in C+4 — Volume Two: Practical Programming.
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html.

3 Linus Torvalds.
Re: SCO: "thread creation is about a thousand times
faster than onnative.
https://Ikml.org/Ikml/2000/8/25/132.

Bibliography

	Introduction
	Templates
	Advanced Templates
	Java to C++
	Bibliography

