
Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Object Oriented C++

Ettore Speziale

Politecnico di Milano

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Contents

1 Introduction

2 Object Oriented Features

3 Case Study: Iterators

4 Java to C++

5 Bibliography

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Contents

1 Introduction

2 Object Oriented Features

3 Case Study: Iterators

4 Java to C++

5 Bibliography

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Object Orientation
You Should Known . . .

Today’s software is complex:

code base becomes bigger and bigger

Object Oriented programming:

has been proven to be effective 1 on handling big things

Common knowledge:

cool features – e.g. polymorphism

features have a cost – e.g. virtual calls

C++ statement:

if you known what you are doing, you can have both
features and performance

1essential

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Object Orientation
A Running Example

For this/these classes we will use a small example:

a processor simulator

It is very simple:

just print instructions instead of executing them

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Contents

1 Introduction

2 Object Oriented Features

3 Case Study: Iterators

4 Java to C++

5 Bibliography

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Classes
Evolving C struct

Abstract Data Types force programmer focusing on:

data

operations on data

Classes are the preferred way to implement ADT in C++:

just take C struct

allow to declare member functions as struct fields

add scoping rules to implement information hiding

introduce the class keyword as syntactic sugar

C++ classes are ready!

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Classes
Hardware is Good

Considering classes an extension of struct allows to focus on
data, without loosing the hardware perspective:

Big

c l a s s Big {
char a ;
i n t b ;
char c ;

} ;

Compact

c l a s s Compact {
char a ;
char c ;
i n t b ;

} ;

How much memory is consumed by Big and Compact?

simple test in simple-mem-layout.cpp

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Class Hierarchy
Organizing Things

The class hierarchy is used to:

organizing classes

establishing a contract with class users

promoting code re-using

Processor Class Hierarchy

Root

Register Instruction

UnaryInstruction

Halt

TernaryInstruction

Add Sub FFT Shuffle

DSPProcessor Processor

RISCProcessor

CISCProcessor

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Class Hierarchy
Files

Showing code on slides is both boring and error-prone, so I will
use as much as possible vi and the shell. All sources are
available on the course site. They are heavily commented. On
slides there are only some tips.

“Talk is cheap, show me the code” [5]

A Java-to-C++ translation table is available at slides end.

The reported class diagram refers to examples found in files
{java,cpp,dsp}-processor.cpp

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Class Hierarchy
Comment

C++ inheritance tree is not single rooted:

it is not a tree, it is a DAG

blue lines do not exist

It is up to programmer avoiding dangerous inheritance shapes:

diamond problem

red extension should not be used

Let us analyze the diamond problem

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Diamond Problem
C++ Programmers Nightmare

It is an ambiguity in the class derivation process:

Basic Diamond

Root

LeftChild RightChild

GrandChild

Both LeftChild and RightChild inherits members from Root.
How are they inherited by GrandChild?

a precise semantic is needed

problem addressed in different ways

we will see two basic solutions

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Diamond Problem
Avoid by Construction

The problem arises only in presence of multiple inheritance:

force using single inheritance – e.g. Java

adopt a programming discipline – avoid using it

Problems:

new constructs could be added to the language – e.g.
Java interfaces

limit code reuse

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Diamond Problem
Construct Hierarchy Carefully

C++ does not prevent you using multiple inheritance:

useful in many applications

It is up to the programmer avoiding dangerous derivations:

it makes no sense deriving DSPProcessor from Processor

it cannot be used alone

its purpose is to implement code for DSP-specific
instructions

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Diamond Problem
Code

Showing code on slides is both boring and error-prone, so I will
use as much as possible vi and the shell. All sources are
available on the course site. They are heavily commented. On
slides there are only some tips.

“Talk is cheap, show me the code” [5]

A Java-to-C++ translation table is available at slides end.

In the file diamond-mem-layout.cpp is shown how C++
allows building diamond in the derivation process, but only
under the assumption that ambiguities can be solved at
compile-time.

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Polymorphism
Same Interface, Different Implementations?

Polymorphism is a key concept on modern programming
languages:

it enable handling different data types using the same
interface

it allows defining the behavior of a family of data types,
decoupling specification from implementation

C++ supports two kind of polymorphism:

subtype polymorphism

parametric polymorphism

Now, focus on the first kind

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Subtype Polymorphism
Recalling Java . . .

You should known it:

a class define some functionalities

subclasses refine functionalities

programmers uses root class interface

call to the actual implementation resolved at runtime –
dynamic binding

Dynamic binding performed using a virtual table

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Subtype Polymorphism
Java Example

Dynamic Collections

i n t e r f a ce C o l l e c t i o n {
pub l i c boolean add (Object o) ;
pub l i c boolean c o n t a i n s () ;

}

c l a s s L i n k e d L i s t implements C o l l e c t i o n {
pub l i c boolean add (Object o) { . . . }
pub l i c boolean c o n t a i n s () { . . . }

}

C o l l e c t i o n c o l l = new L i n k e d L i s t () ;
c o l l . add (new Object ()) ;

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Subtype Polymorphism
Virtual Table Picture

LinkedList in HotSpot Memory

coll

Class Pointer

Lock Word

Data

LinkedList

Virtual Table

Class Description

LinkedList .add LinkedList . contains

C++ class layout is similar 2

2See cpp-processor.cpp

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Subtype Polymorphism
Code

Showing code on slides is both boring and error-prone, so I will
use as much as possible vi and the shell. All sources are
available on the course site. They are heavily commented. On
slides there are only some tips.

“Talk is cheap, show me the code” [5]

A Java-to-C++ translation table is available at slides end.

Following slides will refer to {java,cpp}-processor.cpp files

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Subtype Polymorphism
Comment

Try running java-processor.cpp:

you do not get the expected result!

In Java all non-static methods are virtual:

dynamic dispatching by default

JVM tries to optimize calls

In C++ virtual tables is under programmer control:

member functions calls resolved at compile-time by default

dynamic dispatching enabled using the virtual keyword

Try running cpp-processor.cpp:

size of ∗Processor increases due to VT emission!

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Subtype Polymorphism
Overhead

Virtual Call

movl (%eax) , %eax
movl (%eax) , %edx
c a l l ∗%edx

movl (%eax) , %eax
a d d l $4 , %eax
movl (%eax) , %edx
c a l l ∗%edx

Call overhead:

VT fetching

VT lookup

indirect call

On average [1]:

5.2%/13.7% of
execution time

Normal Call

c a l l Z N 1 0 L i n k e d L i s t 4 s i z e E

Call overhead:

zero

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Name Decoration

Some C++ features are not hardware-oriented:

e.g. function overloading

These features allows an user to refer to different things using
the same name:

impossible for hardware distinguish between them

C++ front-end decorates names in order to uniquely
identify functions, classes, variables, . . .

The c++filt tool allows to un-decorate names:

Decorated

ZN10LinkedList4sizeE

Un-decorated

LinkedList :: size

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Pure Virtual Functions
Code

Showing code on slides is both boring and error-prone, so I will
use as much as possible vi and the shell. All sources are
available on the course site. They are heavily commented. On
slides there are only some tips.

“Talk is cheap, show me the code” [5]

A Java-to-C++ translation table is available at slides end.

In program.cpp there is an example of pure virtual function

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Multiple Inheritance
Code

Showing code on slides is both boring and error-prone, so I will
use as much as possible vi and the shell. All sources are
available on the course site. They are heavily commented. On
slides there are only some tips.

“Talk is cheap, show me the code” [5]

A Java-to-C++ translation table is available at slides end.

The dsp-processor.cpp file contains an example of multiple
inheritance. Please keep attention at the inheritance graph:

DSPProcessor is a processor, but it cannot be used alone

it does not inherit from Processor, avoiding the diamond
problem

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Contents

1 Introduction

2 Object Oriented Features

3 Case Study: Iterators

4 Java to C++

5 Bibliography

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Iterators
Augmenting Pointers

Recalling streams:

an extension of files

Iterators built starting from pointers:

Pointers:

abstract from memory
holding data

used to pass data by
address

Iterators:

mainly associated with
containers

abstract from the
specific container
holding pointed
element

Iterators act like pointers:

operator∗, operator−>, operator++, . . .

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Iterators
Code

Showing code on slides is both boring and error-prone, so I will
use as much as possible vi and the shell. All sources are
available on the course site. They are heavily commented. On
slides there are only some tips.

“Talk is cheap, show me the code” [5]

A Java-to-C++ translation table is available at slides end.

Following slides refer to
program{,-pointers,-custom-iterator,-iterator}.cpp

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Iterators
Comment

Starting from program.cpp:

explicit access to instruction through operator[]

With pointers – program-pointers.cpp:

C-style interface

With iterators – program-custom-iterator.cpp:

same interface used with pointers

After refactoring, you get program-iterator.cpp

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Iterators
Interaction with C++ Library

Showing code on slides is both boring and error-prone, so I will
use as much as possible vi and the shell. All sources are
available on the course site. They are heavily commented. On
slides there are only some tips.

“Talk is cheap, show me the code” [5]

A Java-to-C++ translation table is available at slides end.

In program-functors.cpp iterators are used together with
std :: for each . Many algorithms of C++ library are
iterator-based

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Contents

1 Introduction

2 Object Oriented Features

3 Case Study: Iterators

4 Java to C++

5 Bibliography

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Java Concepts

Java shares many concepts with C++:

both are object-oriented

both are C-based

. . .

Here is an incomplete translation table from Java to C++:

Java abstract methods are called pure virtual functions in
C++

A C++ class is said to be abstract if it has at least one
pure virtual function. If the only members of a C++ class
are pure virtual functions, the class is said to be pure
abstract

Java interfaces can be realized in C++ using pure abstract
classes

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Contents

1 Introduction

2 Object Oriented Features

3 Case Study: Iterators

4 Java to C++

5 Bibliography

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Bibliography I

Karel Driesen and Urs Hölzle.
The Direct Cost of Virtual Function Calls in C++.
In OOPSLA, 1996.

Bruce Eckel.
Thinking in C++ – Volume One: Introduction to Standard
C++.
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html.

Bruce Eckel and Chuck Allison.
Thinking in C++ – Volume Two: Practical Programming.
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html.

Object
Oriented C++

Ettore
Speziale

Introduction

Object
Oriented
Features

Case Study:
Iterators

Java to C++

Bibliography

Bibliography II

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software.
1994.

Linus Torvalds.
Re: SCO: ”thread creation is about a thousand times
faster than onnative.
https://lkml.org/lkml/2000/8/25/132.

	Introduction
	Object Oriented Features
	Case Study: Iterators
	Java to C++
	Bibliography

